

P2P VoD: Does it Scale?

Samuli Aalto, Pasi Lassila

Aalto University School of Electrical and Engineering

Email: {firstname.lastname}@tkk.fi

Niklas Raatikainen, Sasu Tarkoma, Petri Savolainen

Helsinki Institute for Information Technology (HIIT)

Email: {firstname.lastname}@hiit.fi

Problem statement

- Fundamental idea in P2P: clients also act as servers
- P2P VoD: combines file sharing (video exists) and realtime streaming (user wants to view file asap)
- Fundamental question: Are P2P VoD systems scalable?
 - (Qiu & Srikant, 2004) : P2P file sharing systems can scale independent of peer arrival rate if peers cooperate "even a little bit"
 - (Parvez et al., 2008): similar conclusions for VoD using simplified playback phase modeling
- We give a fluid model where playback phase is modeled explicitly and characterize conditions for acceptable QoS.

Fluid model (1)

- Assumptions:

- All users have same upload (µ) and download (*c*) capacities
- Users leave once the video is over (conservative assumption)
- *z* = time to watch video (video size / coding rate)
- Other parameters:
 - η = sharing efficiency factor (peer/chunk selection policies)
 - ζ = probability that a leacher will stay as a seed
 - *k* = number permanent seeds (that never leave)
- State variables:
 - x(t) = number of leachers at time t
 - y(t) = number of seeds at time t

Fluid model (2)

$$\begin{cases} x'(t) = \lambda - \phi(t), \\ y'(t) = \zeta \phi(t) - \frac{y(t)}{z - x(t)/\lambda} \\ \phi(t) = \min\{cx(t), \mu(\eta x(t) + y(t) + k)\} \end{cases}$$

Validation

 Compare (x(t), y(t)) from fluid model (solid) with stochastic model (dashed) and BitTorrent simulations (jagged)

Steady state is approximated very accurately!

Steady-state analysis

- Solve $x'(t) = y'(t) = 0 \Rightarrow$ explicit steady-state solution (\bar{x}, \bar{y}) for upload and download constrained cases
- Positivity, uniqueness, stability of (\bar{x}, \bar{y})
 - $\bar{x} \geq 0, \bar{y} \geq 0, \phi(t)$ is satisfied at steady state
 - local stability of differential equations

Steady-state synthesis

 The system has a unique and stable equilibrium and QoS is good (service rate > coding rate) if

$$\eta > \frac{1}{z}(\frac{1}{\mu} - \frac{k}{\lambda})$$

– System is scalable (QoS ok independent of arrival rate λ) if $\eta > \frac{1}{z\mu}$

Efficiency η is critical for operation!

Scalability example

Fluid model for segmented system

- Efficiency parameter η not "very natural"
 - In VoD only older peers can help younger ones
- Segmented system without η parameter

- Exact analysis not possible...
- Segmented system is never scalable, but limit can be improved by increasing number of phases (last phase is the bottle neck)

Conclusions

- Fluid models for analyzing P2P VoD
 - Black-box model, with h parameter
 - Segmented model
- Scalability
 - Black-box model: system can scale if efficiency is "good enough"
 - Segmented model: never scalable, but limit can be improved by splitting in smaller segments
- Open questions:
 - What happens in the limit when nof segments goes to infinity?
 - Impact of peer capacity heterogeneity?

Papers

- S. Aalto, P. Lassila, N. Raatikainen, P. Savolainen and S. Tarkoma, "P2P Video-on-Demand: Steady State and Scalability", in *Proceedings of IEEE Globecom*, 2010.
- 2. S. Aalto, P. Lassila, S. Tarkoma and P. Savolainen, "Segmented P2P Video-on-Demand: Modeling and Performance", in *Proceedings of 22nd International Teletraffic Congress* (ITC 22), 2010.