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Threats from the Internet have become more and more sophisticated and are able to 

bypass the basic security solutions such as firewalls and antivirus scanners. Additional 

protection is therefore needed to enhance the overall security of the network. One 

possible solution to improve the security is to add an intrusion detection system (IDS) 

as an additional layer in the security solutions. 

In order for the anomaly detection based IDS to decide what is normal and what is 

abnormal in the data monitored, it has to have a point of comparison. In the context of 

networks, this point of comparison is known as a model of normal network traffic. Once 

the model is created, it is then used as a basis when traffic is monitored.  

Feature extraction plays an important role when creating a model of the network 

traffic. The features should represent the traffic flows as good as possible. The 

challenge is on finding out the most suitable features for the anomaly detection based 

IDS, for it to efficiently detect intrusion from the data monitored. 

Through analysis of different attacks, it is possible to find out what their effect is to 

the traffic flows. Common attacks; denial of service, probing and attacks against the 

services of the network are taken as a basis for the evaluation. After analysing the 

attacks it was seen that attacks of similar type also have similar effect to the network 

traffic and thus, subsets of features were formed for each attack type. 

The results, however, show that it is clear that more investigation on the differences 

between operating systems and attacks against them need to be done in order to find out 

more suitable sets of features. The results also showed that attacks of similar type have 

different level of effect to the network traffic. Although there were huge differences in 

the results, they were still more or less according to the expectations. Nevertheless, the 

results can be thought of as an encouragement, that it is possible to use smaller feature 

groups to detect specific attack categories with less processing requirements. 
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Perinteisesti tietoturvaa ovat ylläpitäneet palomuurit ja virustentorjuntaohjelmat. Niiden 

kyky tunnistaa sekä ehkäistä tietoturvaa rikkovien tahojen toiminta on kuitenkin 

saavuttanut äärirajansa. Valitettavasti hyökkäysmenetelmät ovat kehittyneet nopeaa 

vauhtia yhä älykkäämmiksi ja kykenevät läpäisemään nämä perinteiset 

turvamenetelmät. Yksi mahdollinen ratkaisu ongelmaan on lisätä verkon turvakerroksiin 

älykkäämpiä menetelmiä, kuten tunkeutumisen havaitsemisjärjestelmiä (engl. intrusion 

detection system, IDS). 

Jotta poikkeavan käyttäytymisen havaitsemiseen perustuva IDS toimisi tehokkaasti 

teleoperaattoriverkoissa, tulisi tutkia minkälaista tietoa verkkoliikenteestä olisi 

kerättävä, jotta tuloksekas tunkeutumisyritysten havainnointi olisi mahdollista. 

Perimmäisenä ajatuksena on etsiä sopivimmat piirteet verkkoliikenteestä, joiden 

perusteella voidaan luoda mahdollisimman kuvaava malli verkon normaalista 

toiminnasta ja malliin vertaamalla havaita poikkeamat verkkoliikenteestä. 

Palvelunesto- ja verkon urkintahyökkäykset sekä hyökkäykset verkon palveluita 

kohtaan edustavat tyypillisimpiä uhkia Internetistä. Näitä hyökkäystyyppejä 

analysoimalla havaittiin kuinka samantyyppisillä hyökkäyksillä on samanlainen 

vaikutus verkkoliikenteeseen. Näiden hyökkäystyyppien perusteella luotiin piirrejoukot, 

jotka otettiin vertailun kohteeksi. 

Tulosten perusteella on selvää, että tutkimustyötä käyttöjärjestelmien eroista ja 

niihin kohdistuvista hyökkäyksistä tulee vielä jatkaa, jotta voidaan löytää sopivimmat 

piirrejoukot. Tulokset osoittavat myös, että samantyyppisten hyökkäysten aiheuttamien 

vaikutusten välillä on suuria eroja. Vaikka erot eri piirrejoukkojen välillä olivat suuria, 

saavutettiin niillä kuitenkin lähes odotusten mukaisia tuloksia. Näiden tulosten pohjalta 

voidaan sanoa, että on mahdollista käyttää pienempiä piirrejoukkoja eri 

hyökkäystyypeille ja siten suorittaa laskennallisesti kevyempää poikkeamien 

havainnointia. 
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1 INTRODUCTION 

 

In the 21st century the development of telecommunications networks has taken giant 

leaps from circuit and packet switched networks towards all-IP based networks. This 

development has created a unified environment where communication of applications 

and services (data and voice) are being transferred on top of the IP-protocol.  

At the same time the data transmission speeds in both uplink and downlink have 

increased significantly from the second generation (2G) of radio access networks to the 

third generation (3G) of radio access networks. Also the devices that subscribers of 

telecommunications networks are using have been developing and the boundary 

between computers and mobile phones has become unclear. With the modern mobile 

devices, also known as smart phones, the subscriber can do almost everything that can 

be done with basic personal computers. This means that the full content of the Internet 

is now also in the pockets of each smart phone owners.  

Although the development of communication networks has been towards a better 

sustainability of technologies it has also raised new unwanted possibilities. Threats that 

were applicable only in the fixed networks are now feasible in the radio access 

networks. When taken into account that threats are becoming more and more 

sophisticated it also means that the security systems have to become more intelligent. 

The basic security measurements such as firewalls and antivirus scanners are in their 

limits to cope with the overgrowing number of intelligent attacks from the Internet. A 

solution to enhance the overall security of the networks is to increase the security layers 

with intrusion detection systems. 

To understand what role intrusion detection has in telecommunications networks it 

can be thought through a simple example. Think of intrusion detection as a security 

guard that is guarding the front gate of a factory premises. The premises of the factory 

represent the network of a mobile operator and the fence surrounding the factory is the 

operator’s firewall. Employees of the factory represent the traffic in the operator’s 

network.  

It is know that factories are well protected and they do not want to let people inside 

the premises that do not have the required clearances. The fence or firewall in this case, 

is in charge to keep all unwanted visitors outside the factory premises. Just like in a 

firewall, a fence has holes (gates) in it to let employees move in and out of the factory 

premises. These holes in the fence though leave the factory vulnerable to the unwanted 

visitors and this is why the factory has a security guard guarding the gate. 
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Depending on the role that the security guard is in, while he is monitoring the people 

going in and out of the factory premises, he either notifies the head of security when he 

detects a suspicious looking person walking through the gate. Or he steps in and 

prevents this person from entering the factory premises.  

The basic functionality of an intrusion detection system is the first example of the 

security guard. IDS generate an alarm when it detects something suspicious and then the 

security personnel of the network operator further investigate the cause of the alarm.  

In order for the security guard to do his job well, a set of rules and instructions are 

needed. In the context of IDS in telecommunication networks the rules and instructions 

are algorithms that IDS uses to analyse network traffic. The question is: “How should 

these rules and instructions be defined and, especially, what are the criteria to decide 

what features should be monitored?” 

This thesis takes various approaches to answer to the question how the features 

should be selected from the network traffic so that the intrusion detection system can 

efficiently detect threats in the environment of telecommunications networks.  

The rest of the thesis is organized in the following manner. Chapter 2 introduces the 

basics of intrusion detection systems and how it fits into the environment of 

telecommunications networks. In addition, a discussion on the prior art of research on 

the field of intrusion detection is given in this chapter. 

Chapter 3 gives an overview of feature extraction methods for intrusion detection 

systems and what challenges the environment sets to the extraction. In addition the 

features used in the research field of network based intrusion detection systems are 

discussed in the end of this chapter. 

Chapter 4 discusses the approaches to the feature extraction used in this thesis. The 

results of these approaches are summarised in the end of this chapter.  

Chapter 5 describes the evaluation process of feature subsets and the data that is 

used as a basis in the evaluation. The results of the feature performance analysis are 

discussed in Chapter 6. Conclusions are presented in Chapter 7. 
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2 INTRUSION DETECTION IN 

TELECOMMUNICATIONS NETWORKS 

Introduction to telecommunications networks and intrusion detection systems’ role in it 

is discussed in this chapter. In addition a brief overview of features that were used in 

prior research of IDSes is presented. 

2.1 Telecommunications Networks 

Development in telecommunications networks has been going towards mobility with 

radio access networks. For example, in Finland, many operators have been pulling up 

their copper wires in rural areas and are replacing digital subscriber lines (xDSL) 

connections to 3G subscriptions. According to news articles reported in HS.fi [1] and 

Tietokone.fi [2] TeliaSonera announced its’ plans on pulling up the copper wires.  

In a way the development or some may say non-development of networks has been 

from local area networks (LAN) towards radio access networks (RAN) for its’ easier 

and cheaper set-up in rural areas where the density of network infrastructure is not 

sufficient. Despite the fact that in Finland there has been a discussion [3] about 

developing a country wide optical fibre network, for the time being the only option for 

many is still to use RAN connections. 

2.1.1 Infrastructure of Telecommunications Networks 

From the subscriber’s point of view it might look like the infrastructure of 

telecommunications networks consists only from a group of radio towers that are 

scattered all around the cities and rural areas. In reality the underlying infrastructure of 

the network is a far more complex thing than just the base stations and radio interfaces. 

Telecommunications networks have a lot in common with enterprise networks.  In 

enterprise networks there are hundreds of computers and users connected together with 

routers, switches and interconnected subnets. In telecommunications networks there are 

the same elements as in enterprise networks but in addition there are also multiple radio 

access networks (RAN) from GSM to LTE and a huge amount of fixed and mobile 

users. The infrastructure of telecommunications networks can be divided into three sub-

networks; access network, core network and service network. This division is illustrated 

in Figure 2.1. 
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Access Networks 

The part of the network that connects and gives access to subscribers to their service 

provider is called access network (see Figure 2.1). Access networks can be further 

divided into fixed line access networks (Ethernet, xDSL, and Cable) and into radio 

access networks (2G, 3G, LTE, CDMA and WLAN). Another term used in 

telecommunications networks is a subscriber network. The subscriber network is a 

combination of the access network together with subscriber’s user equipments such as 

mobile phones, laptops etc. [4] 

Radio access networks have been evolving towards all IP based networks but at the 

same time older radio techniques has to be supported. According to global GSM 

incremental market analysis [5] done by ZTE, in 2010 the GSM and 2G are still the 

most commonly used technique to use calling and data services globally. Over 80% of 

global mobile subscribers use only GSM accounts while 3G and CDMA share the rest 

20%. This is why in radio access networks there are still different base stations; base 

transceiver station (BTS) for 2G, Node B (different name for BTS) for 3G and evolved 

Node B (eNode B) for LTE. Different radio techniques require different controllers; 

base station controller (BSC) for 2G and radio network controller (RNC) for 3G. In 

LTE and CDMA all the mobility management operations are handled by mobility 

management entity (MME) in the core network. [4, pp. 44-48] 

 

Evolved Packet Core Network 

The intermediate network that connects access networks to service networks is called 

evolved packet core network (see Figure 2.1). In addition to operating as an 

intermediate, core network is responsible for circuit-switching and packet-switching 

operations, subscriber charging, AAA services and subscriber’s mobility management 

services. [4, pp. 44-48] 

Because of the wide variety of access networks the core network has evolved into a 

complex environment. The core network has to support older radio access techniques 

where voice and data is separated between packet-switched and circuit-switched 

networks (2G, 3G) and at the same time it has to provide services for the newer radio 

access networks (LTE) where voice and data is not separated anymore. [4, pp. 44-48] 

In a 2G network the packet-switching operations for data transmissions and circuit-

switching operations for calls are provided by serving GPRS support node (SGSN). In 

evolved packet core, the 3G is using SGSN only for the circuit-switching operations. 

The data transmissions in 3G are handled by serving gateway (S-GW) together with a 

packet data network gateway (P-GW). In LTE voice and data is not separated anymore 

and therefore all the packet data operations are handled by S-GW together with P-GW. 

High rate packet data serving gateway (HSGW) is providing voice and data operations 

for the CDMA radio networks. [6, p. 156] Evolved packet data gateway (ePDG) is 

providing packet data operations for the WLAN. [6, pp. 24-29] 
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In addition to these previously mentioned elements in the core network there are 

also home and visitor location registers (HLR/VLR) for the subscriber mobility 

management, AAA for the subscriber authentication, authorization and accounting 

functions, charging for the subscriber billing services, policy and charging rules 

function (PCRF) for quality of service and charging related policies. [4, pp. 44-48] 

 

Service Network 

Service network provides services like connection to the Internet. Service network is 

also responsible for providing access to company intranets and operator specific 

services. In addition to these it also provides access to IP multimedia subsystem (IMS) 

for multimedia and voice applications such as VoIP. [4, pp. 44-48] 

 

 
Figure 2.1 Telecommunications networks’ infrastructure [6, p. 17; 156] 

2.1.2 Threats against Telecommunications Networks 

According to CERT [7] the attack sophistication has increased during the past 30 years 

while at the same time the intruder knowledge has been coming down. This 

development is illustrated in Figure 2.2. Reason for the increasing sophistication of 

attacks can be explained with the fact that the use of Internet has become more common 

and the security solutions protecting the Internet users have become more intelligent. Of 

course the computers and operation systems have also become more secure. In order to 

penetrate intelligent security measures the attacks have to be intelligent also. The 

downward trend in intruder knowledge can be explained by the wide availability of 

freely distributed applications that can be used to perform attacks. In most cases the user 

of this kind of an application does not even know what he or she is doing.  
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Figure 2.2 Attack sophistication vs. intruder knowledge according to Carnegie Mellon 

University [7] 

 

Another security concern in modern communication networks is that the networks are 

vulnerable to threats despite the fact that they might not even be connected to the 

Internet. One example of this concern was confirmed in July 2009 when Internet worm 

Stuxnet was discovered. Stuxnet was targeting particular process control systems, 

especially industrial installations, such as uranium enrichment plants. What makes 

Stuxnet so efficient is its self-replicating functionality. Stuxnet can replicate itself into 

USB devices and network shares and then further spread into networks that are not 

directly or not at all connected to the Internet. [8]  

As the development of telecommunications networks has been toward all-IP-based 

networks and services, it has also created new possibilities for malicious entities to 

perform illegal activities. In addition the attacks that were applicable only for fixed 

connections can now be used against mobile connections as well. Some of the typical 

types of threats are discussed in the following paragraphs. 

 

Reconnaissance 

Attacks whose goal is to map the network services, used and open ports, operating 

systems in use etc. are called reconnaissance attacks. Reconnaissance can be divided 

into two groups; to the ones that come from the outside of the network (external 

reconnaissance) and to the ones that come from within the network (internal 

reconnaissance). 

In external reconnaissance the attacker tries to gain information about the operator’s 

network infrastructure and to find security vulnerabilities that could be later used as a 

medium to get inside the network.  In internal reconnaissance the attacker has access to 

the internal network infrastructure either legitimately or illegitimately. The attacker 

could use the same methods as in external reconnaissance to map the network 

infrastructure from inside the network.  In addition the attacker could access network 

elements and computers with privileged rights and steal confidential information from 

databases and information banks that holds knowledge about the network infrastructure. 
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Denial of Service attacks 

DoS attacks are trying to deny or limit the subscribers or operators use of services. This 

can be achieved by exhausting all the resources (CPU, memory and bandwidth) of the 

targeted subscriber’s user equipment to prevent it from using his or her device. This can 

be achieved by publishing the targets phone number or IP address on public forums or 

in other media that could cause a huge amount of people trying to access the target at 

the same time.  

According to Cisco the mobile data traffic will double every year to 2014. This will 

set a huge pressure on CPS’s network operation and service quality as the amount of 

traffic and the number of mobile subscribers keeps on increasing at the same time. [9] 

The increasing amount of network traffic might as well cause similar situations as in 

DoS by overloading the network infrastructure. 

 

Malicious Content 

The amount of malicious web sites poses a significant threat to UEs when the UEs are 

getting more and more similar features as desktop computers. For example, the current 

Linux phones have desktop computer’s performance and applications running on it. At 

the same time the mobile web browsers are supporting java, flash and other media 

players to display the webpage content as it is displayed with desktop computers. This 

also means that the same threats that might cause damage to desktop computers are also 

applicable with UEs.  

According to McAfee lab’s 2010 third quarter threats report [8] the amount of new 

malware Internet sites are constantly increasing. For example, in September 2010 the 

amount of new malware sites fluctuated from a few hundred to more than four thousand 

per day. The same figures are valid also with the amount of new phishing sites per day. 

[8] 

 

Malware attacks  

In this scenario the infrastructure of telecommunications networks is targeted with a 

sophisticated worm that has self replicating functionality to spread even further among 

network elements.  

Stuxnet [8] is an example of this kind of worm that spreads through USB-devices 

and Internet shares towards a specific target. In stuxnet’s case the worm is targeting 

specifically industrial controlling machines, especially in a certain country. 

The attacker could modify Stuxnet in such way that instead of targeting process 

control systems it would attack against network management elements. In the worst 

case scenario this kind of a threat could lead into a critical failure in an operator or in 

every operator’s networks. At worst this would mean that all communications would be 

denied for the subscribers locally or even globally. 

With a worm like Stuxnet is could be possible to sabotage the entire communication 

network of a country. As can be seen from Figure 2.3 a targeted attack can be very 

precise but at the same time it can spread widely. Figure 2.3 is a representation from 
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McAfee Global Threat Intelligence Stuxnet map [8].  The circles illustrate the amount 

of Stuxnet infections in that area. The bigger the circle the more infections there are in 

that area.  Although in the case of Stuxnet it is believed that its main target was in Iran 

but today India is suffering the most [8]. 

 

 
Figure 2.3 Stuxnet infections according to McAfee Global Threat Intelligence [8] 

2.2 Intrusion Detection Systems 

Intrusion detection system (IDS) can be software or hardware that monitors for 

intrusions and anomalies from the environment it is set to guard.  In general the IDS is a 

security monitoring tool like a firewall that tries to detect and possibly prevent 

malicious activity.  

Two main techniques for intrusion detection exist based on what they can detect. 

These two techniques are misuse detection and anomaly detection. Misuse detection and 

anomaly detection systems can be further divided into two groups based on the 

detection method; into behaviour based and into knowledge based IDS. Behaviour 

based IDS monitor behaviour deviations of the system in order to detect intrusions and 

anomalies. Knowledge based IDS monitors a system using patterns of known intrusions. 

[10] 

Basic functionality of IDS is to act as a passive alerting system. This means that 

once intrusion is detected the IDS generates an alarm and provides all the relevant 

information (time, IP packets, etc.) that triggered the alarm. IDS that operates in active 

mode, reacts to detected intrusions by using countermeasures to prevent the access of 

the intrusive data accessing the system. Active IDSes are called intrusion prevention 

systems (IPS). For example, IPS can alter the firewall rules, change routing tables, limit 

network bandwidth or just disconnect the connection. IDSes can be further divided into 

two systems depending on where the IDS is placed. The IDS can be either a Network 

based IDS (NIDS) or Host based IDS (HIDS). Network intrusion detection system 
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monitors for intrusions in network traffic and host intrusion detection system monitors 

the behaviour of a local machine. [10]  

2.2.1 Intrusions and Anomalies 

In the same context of IDS, words intrusions and anomalies are commonly used. The 

term intrusion is a bit confusing as the system that tries to detect intrusions is also a 

general term for the system that tries to find anomalies.  

From a security point of view, intrusion is a malicious activity against the 

confidentiality, integrity or availability of information. An anomaly is a deviation from 

what is thought of as normal. [10] The difference between an anomaly and intrusion is 

somewhat depending on the environment. For example, intrusion is always more or less 

a deviation from normal behaviour. But on the other hand an anomaly is not always an 

intrusion. For example, a failure on a network element might cause abnormal activity in 

the network but it is not an intrusion. In this document the word IDS is therefore used to 

describe a system that can be used to detect both, intrusive and anomalous behaviour. 

2.2.2 Architecture of IDS 

Intrusion detection systems are constructed from three components; sensors, analyser 

and user interface. Sensors are collecting data such as network traffic, log files and 

system trace files. Once the data is collected it is then forwarded to the analyser. 

Analysers or detection engines are responsible for determining if there was an intrusion 

among the data. After an intrusion is detected the analyser’s output is either an alarm or 

action. The sensor and analyser can be a single system or they can be separated into 

individual components depending on how the IDS is constructed. For example, one 

analyser might get traffic data from multiple sensors or the sensor might be embedded 

into the analyser. The user interface provides the means for the administrator to monitor 

the output of an analyser and configure analyser and sensor operations. The general 

architecture of intrusion detection system is illustrated in Figure 2.4. If the IDS is an 

reactive type, the components can also conduct an action when intrusion is detected, to 

prevent any further damage to the system. These preventions are illustrated as action 

arrows in the Figure 2.4.  

 

 

Figure 2.4 IDS architecture 
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2.2.3 IDS in Layered Defence In-Depth Strategy 

Usually the IDS is working behind firewalls in order to detect intrusions that firewalls 

have missed. The IDS or IDS sensor may as well be placed before the firewall in order 

to collect illegal traffic data that would otherwise be rejected by the firewall. In some 

cases it is useful to collect such information in order to recognise and to know when the 

network is being targeted. In general IDS gives an extra protection layer to the defence 

in-depth strategy [11]. An example of the defence in-depth strategy is illustrated in 

Figure 2.5 where on the left are some of the possible threats from the Internet 

endangering the overall security of the telecommunications networks operation.  

 

 
Figure 2.5 Layered defence in-depth strategy 

 

The basic idea in layered defence in-depth strategy is to enhance the overall security of 

the protected system. This can be achieved by adding multiple security measurements 

and improve security awareness on all levels from people to operations. In each of the 

layers some parts of the traffic that might be malicious are detected and prevented from 

accessing the targeted network. [11] 

In the context of telecommunications networks this means that the overall security 

can be enhanced by adding IDS and possibly IPS functionality into strategic places, like 

for example, in outer gateways. IDS’s role in this defence in-depth strategy is to detect 

possible threats that have passed firewall rules and antivirus scanners.  

2.2.4 False positives and False negatives 

In order to evaluate the IDS’s performance and detection accuracy there are four 

possible occurrences whose ratio is monitored. These occurrences are illustrated in 

Figure 2.6. 

False positives are legal occurrences that are incorrectly marked as anomalous. True 

positives are occurrences that are correctly marked as anomalous. False negatives are 

anomalous occurrences that are missed by the detector and therefore are not marked as 
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anomalous. True negatives are occurrences that are correctly marked as legal activity. In 

order to find out whether the anomaly or intrusion is a false positive or false negative, it 

has to be investigated by a network operator. [10] These occurrences are illustrated in 

Figure 2.6. where the vertical axis presents how activity is detected by IDS and the 

horizontal axis show what the activity actually is.  

 

 
Figure 2.6 False positives, true positives, false negatives and true negatives 

 

From the network operator’s point of view the most risky situations are the false 

negatives. Possibly intrusive activity that passes through IDS as normal and legitimate 

activity might harm the whole network and therefore it would affect every subscriber 

using the network. False positives are not as harmful as false negatives because it will 

affect only one subscriber. Of course from the subscribers’ point of view this would 

seem like bad service when the subscriber’s access to the network is denied. In most 

cases though, user’s network activity is not completely denied. [10] 

2.2.5 Misuse Detection 

Misuse detection can be thought to behave like a virus scanner. Virus scanners are 

looking for known patterns or signatures of viruses, in the same manner misuse 

detection is based on known intrusion patterns and signatures. These patterns can be, for 

example, certain character strings in IP packet contents. In short it can be said that 

misuse detection deals with known attacks. As such it can be used to analyse network 

traffic efficiently for known intrusions. [10] 

The downside of misuse detection is that it can be avoided by changing the attack 

pattern slightly so that it will not match the pattern anymore [12]. It is also problematic 

to write the signatures so precisely that they match to all possible variations of intrusive 

activities and at the same time avoids matching to non-intrusive activities. Just like virus 

scanners, IDSes that are based on misuse detection needs to be updated regularly for the 

latest patterns and signatures. [10] 
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Most of the available IDSes use misuse detection because it has been studied the 

most and in a way it is easier to match activities based on known attack patterns rather 

than finding out whether the ongoing activity is malicious or not just by analysing the 

activity without previous knowledge of it. This is where misuse detection and anomaly 

detection differentiate the most. [10] 

2.2.6 Anomaly Detection 

As misuse detection was based on previously known patterns anomaly detection may 

detect also something that has not yet been discovered. It is also worth noting that while 

intrusion detection assumes all the matching activities as malicious, anomaly detection 

does not assume all anomalies necessarily malicious. [10] It depends on the 

environment and the rules and regulations whether the detected anomaly is malicious or 

not.  

Network traffic anomaly detection is based on two presumptions. The first 

presumption is that network traffic has distinguishable characteristics in normal 

conditions. A model of these normal conditions can be created with parameters. The 

second presumption is that deviations from this normal model are rare and potentially 

might be a result of intrusive activity. These two presumptions are according to what is 

presented in the field literature. [13; 14; 10] 

 

Anomaly Detection as a Process 

As a process, anomaly detection can be divided into two phases. In the first phase a 

model of normal network traffic is created. This model can be derived or learned from 

training data using model generation algorithms or mathematical models. In the second 

phase traffic is monitored for deviations from the normal model. [10] 

The model of normal network traffic is created by using features from the traffic. 

Feature in the context of anomaly detection means a value or symbol which describes 

the network traffic. These features should represent the traffic behaviour and 

characteristics but in the same time they should not contain any redundant information 

in order to be as lightweight as possible. In the field literature, the word, feature has 

numerous synonyms such as variable, parameter and descriptor.  

In order to create a model of the normal network traffic, it needs to be clean from 

malicious activities and at the same time it needs all the variations of the environment it 

is monitoring. Generating such traffic data is difficult and ready data sets like Lincoln 

laboratory datasets (see Section 2.2.8) are rare. It is difficult to simulate normal traffic 

in a laboratory environment as the traffic never is evenly distributed between different 

network protocols. Also network element failures and performance fluctuates 

significantly in a normal network which is not easily simulated in a laboratory. [13]  

Once the model of normal network traffic is created, traffic is then monitored for 

deviations from the model. Some analysis is needed to decide whether the deviation is 

intrusive or malicious. Normally this analysis is done by a network security guard. As 

the detected anomalies might be previously unknown it is difficult to know what is 
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actually causing the anomaly and whether it is intrusive or not. [13] This anomaly 

analysis process needs to be supported by as much information as possible, so that the 

security guard could work efficiently. In anomaly detection, there is a wide variety of 

approaches to choose from and some of them are discussed in the following paragraphs. 

 

Statistical based Anomaly Detection 

In a statistical based method anomalies are detected from statistics. Statistical based 

methods create models based on history. These models are then compared to the current 

situation and deviations between these models are considered as anomalies. Once a 

deviation is monitored its severity is then evaluated and graded. The more severe the 

anomaly is the higher the grade is. [15] For example, the average number of times a user 

has accessed the network daily is compared to the current amount. If the current number 

of access to the network exceed the average number by one or two it is not maybe 

considered as a severe anomaly. But in case the number is, for example, ten times or 

even hundred times higher, it might be a severe anomaly. This of course depends on 

how the grading rules are defined. 

 

Rule-modelling based Anomaly Detection 

In a rule-modelling based method rules are defined for the system and once these rules 

are broken, those instances are marked as anomalies. [10] Basically this is similar to 

how firewalls operate. Firewalls have predefined rules which are matched against 

network traffic. If the traffic is not in conflict with these rules it is then allowed to pass 

through. Everything that is against these rules is dropped. In anomaly detection this 

would mean that everything that is against the rules is thought of as an anomaly. 

 

Threshold based Anomaly Detection 

In a threshold based method, thresholds are defined for the data deviation monitoring. 

Once a threshold is crossed, that instance is marked as an anomaly. [10] In a way, 

threshold based anomaly detection is a combination of statistical based and rule-

modelling based methods. Threshold itself is a rule that is created based on statistics. 

The network administrator knows, for example, how high the CPU usage is on a 

network element. Therefore he can set a threshold that creates a rule which says that 

CPU usage cannot be more than 80 percent. An alarm is triggered once this threshold is 

crossed.  

 

Machine-learning based Anomaly Detection 

In a machine-learning based method anomaly detection models are constructed based on 

past behaviour. The learning algorithm analyses, for example, previously recorded data 

sets containing network traffic and create a model of normal behaviour. After the 

learning period the detector monitors deviations from this created model. A machine-

learning based detector can adapt to changes in the network traffic when, for example, 
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some application is distributed to all local machines in the network and this application 

generates previously unknown traffic to the network. [16]  

 

Payload based Anomaly Detection 

In a payload based method, anomaly detection models are created based on the 

application payload data to a specific host and port. In addition to this a standard 

deviation is calculated based on the payload length. Once the model is created, all the 

traffic coming in to a specific port is analysed and the payload length is matched against 

the model’s average length. If the difference is too large, an alarm is triggered. [17] 

 

Protocol based Anomaly Detection 

A protocol based anomaly detection monitors protocols for deviations from the protocol 

standard specifications. The detector creates models based on TCP/IP protocol 

specification which is then matched against the network traffic. If the monitored traffic 

operates with a protocol that is in conflict with the specification, it is then marked as an 

anomaly. Most of the protocol based anomaly detectors are built as state machines. This 

is understandable as all connection oriented protocols have a state. The detector is 

therefore monitoring transitions from one state to another and if the anticipated 

transition is different from the transition that has occurred, an alarm is triggered. [18] 

 

Graph based Anomaly Detection 

A graph based anomaly detection creates activity graphs of hosts and the activity in a 

network. These activity graphs describe how the activity is spreading in a network. For 

example, if the activity graph becomes a huge tree-like graph the activity is then 

considered as anomalous or a worm spreading to be more precise. [19] 

 

Signal Processing Techniques based Anomaly Detection 

Methods that are based on signal processing techniques are also researched widely. For 

example Fontugne et al. [20] used image processing-based approach in their anomaly 

detection system. Their system is based on pattern recognition, where anomalous traffic 

flows are detected through behaviour-based signatures. The most common interest has 

been on using signal processing methods to enhance the overall efficiency and at the 

same time reduce the amount of false positives. [21]  

 

Data Mining based Anomaly Detection 

A data mining based anomaly detection tries to automatically discover consistent 

patterns of features from large stores of data that describe the behaviour of network 

traffic, user or programs. Classifiers are constructed based on these features which are 

used to classify the monitored features into anomalies and known intrusions. Data 

mining is an example of method that combines algorithms used in different methods 

like in machine-learning, statistical and signal processing based methods. [22] 
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All of these methods have their pros and cons depending on what is the monitoring 

target. A protocol based detection method is efficient on analysing network protocols 

but is not capable of detecting malicious payload. The same applies vice versa, payload 

based detection method can be efficient in detection malicious data in payloads but is 

not efficient in detecting intrusive use of protocols. In some cases a combination of 

different methods is more suitable. The environment and its features have to be 

evaluated in order to choose the most efficient setup to detect intrusions in that specific 

environment.  

2.2.7 Prior Research on Intrusion Detection 

Intrusion detection has been studied widely since Anderson introduced the concept of 

intrusion detection in 1980 [23]. However the initial push forward in the field of IDS 

research was received seven years later in year 1987, when Denning introduced an 

intrusion-detection model, also known as Denning’s model [14].  

 

Denning’s Model 

Denning presented an idea that malicious behaviour could be perceived from system use 

by comparing it against a model of a normal system use. Denning’s model describes the 

operation of a host based IDS that is used to monitor usage of a local machine. 

Intrusions in her model are detected by first creating profiles of normal system usage 

and then the system’s usage is monitored and compared against these pre-defined 

profiles. Denning’s idea is that malicious usage of the system can be detected as a 

deviation on normal usage profile. [14]  

Denning’s model has been widely used as a basis for different intrusion detection 

systems and its influence can be seen on the prior research on intrusion detection where 

the focus has been mainly on host based IDS. Axelsson [24] published a survey on 

intrusion detection systems in year 2000 in which he listed 20 research projects from 

years 1988 to 1998. From the 20 studies on IDS there were 14 that were completely host 

based, three that operated both in host and in network and two that were completely 

network based. [24]  

Gates et al. [13] challenges the use of Denning’s model as an inclusive model for all 

types of IDSes (NIDS and HIDS). Their argument is that as Denning’s model is 

designed to be a model for host based IDS. As such without modifications it might not 

be usable as a basis for network IDS. Second argument from them was that Denning’s 

model was created in 1987 when detecting system behaviours on a local machine was 

more important than analysing the network traffic, the model itself might be too old to 

meet the requirements of modern environments.  

 

Network Intrusion Detection System Researches 
From 21st century onwards, while networks have been developing rapidly, network 

based IDS has received more attention. Change of focus in IDS research from HIDS 

towards NIDS can also be explained by the research value. HIDS has been studied 
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widely and new findings on that field are difficult to find. NIDS instead is a more 

interesting topic because network based intrusions are constantly increasing. This gives 

new opportunities for the research field to discover new methods that are able to detect 

previously unknown threats and publish a research paper from it.  

Another reason for NIDS popularity as a field of research is that firewalls have not 

developed as fast as NIDSes have. Firewalls are able to give basic security but they are 

not able to cope with constantly evolving attacks. Currently the de facto standard in 

network intrusion detection is Snort [25] which could be easily and falsely described as 

a network firewall.  

Snort is an IDS/IPS that combines signature, protocol and anomaly based intrusion 

detection methods to efficiently detect and prevent intrusions. Snort has been developed 

by Sourcefire that also regularly provides rule updates to Snort [26]. In addition to 

Snort, some network based IDS studies are discussed in the following paragraphs. 

 

Autonomous Agents for Intrusion Detection (AAFID) 

AAFID was a project within the centre for education and research in information 

assurance and security (CERIAS) in Purdue University. The project group consisted of 

students and faculty who were interested in developing a new type of intrusion detection 

system. Their approach is to use a distributed architecture of IDS agents to cover the 

operation of the whole network. [27] 

 

Common Intrusion Detection Framework (CIDF) 

CIDF is a project in which a common framework for protocol and application 

programming interfaces is developed. The project is currently coordinated by 

Schnackenberg and Tung. Their goal is to make it easier for intrusion detection research 

projects to share information and resources. [28] Based on the field literature it seems 

that the CIDF is not widely used. 

 

Distributed soft computing intrusion detection system (D-SCIDS) 

D-SCIDS consists of multiple distributed IDS sensors over a large network. IDSes 

communicate with each other directly or through a centralized server that also provides 

advanced network monitoring. In their research Abraham et al. [29] evaluated three 

fuzzy rule-based classifiers to detect intrusion in network and were then further 

compared with other machine learning techniques. [29] 

 

Next-Generation Intrusion Detection Expert System (NIDES) 

NIDES is a real-time IDS that monitors user activity on multiple target systems. NIDES 

is placed on a single host that analyses audit data collected from interconnected systems. 

Intrusion detection on NIDES is a hybrid of misuse detection and anomaly detection; a 

rule based signature analysis and a statistical profile-based anomaly detector. The  

notation expert in NIDES means a system that is intelligently processing intrusion 
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alarms to decide whether further investigation from a security guard is needed or not. 

Further development of NIDES evolved into SRI’s project called EMERALD. [30] 

 

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD) 

EMERALD is a tool for tracking intrusive activity through and across large networks. 

The EMERALD consists of multiple polymorphically distributed detectors that can be 

tuned independently. The detectors are EMERALD eXpert and EMERALD eBayes. 

EMERALD eXpert is a signature based intrusion detector and EMERALD eBayes is an 

adjustable anomaly detector. CIDF [28] is used as a basis for communicating 

information between detectors. [30]  

 

Graph-based Intrusion Detection System (GrIDS) 

Staniford-Chen et al. [19] have presented a graph-based IDS that collects activity data 

on computers and network traffic between them and then aggregates the information 

into activity graphs. These graphs reveal the causal structure of network activity and 

allow detection of large-scale attacks. Intrusions are detected by analysing the 

characteristics of the activity graphs. 

 

Spitfire 

Spitfire was developed to enhance the work of NIDS operators. It can be used as a 

replacement or as a supplement to the Cisco Net Ranger or ISS Real secure GUI. 

Spitfire can be used in real time operation or it can be used to analyse historical 

information. Spitfire provides a robust historical database of intrusion activity that can 

be used to detect trends and patterns. [31]  

2.2.8 Lincoln Laboratory Dataset  

Lincoln laboratory data sets are “the first standard corpora for evaluation of computer 

network intrusion detection systems” [32] and were created under the sponsorship of 

Defense Advanced Research Projects Agency (DARPA) and Air Force Research 

Laboratory (AFRL). [32]  

Lincoln laboratory collected two dataset in consecutive years in 1998 and 1999. The 

1998 dataset contains seven weeks of training data and two weeks of testing data which 

contain network traffic and operating system logs. These datasets contain labelled 

anomalies and network attacks mixed with normal network traffic. Similarly, the 1999 

data set contains five weeks of training data and testing data but in addition to 1998’s 

data set, the 1999 contains also attack free training data. This attack free data can be 

used by IDS to create a model of normal network traffic. [32] 

Lincoln laboratory datasets have been used many times by IDS researchers since 

they were published. For example, Lu et al. [33] converted network packet logs into 

network flow-based logs and used this converted dataset in their wavelet analysis based 

IDS. In addition, the Lincoln laboratory 1998 dataset is also converted into connection-

based dataset which is also known as KDD cup 1999 [34]. The KDD cup dataset is 
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especially used in evaluation of IDSes that are based on the machine-learning method. 

For example, Abraham et al. [29] evaluated their distributed soft computing intrusion 

detection system (D-SCIDS) with the KDD cup dataset.  

The datasets have proven their usefulness in evaluation of the IDS in the past but 

current IDSes and their evaluation should not rely only on these datasets. As time has 

passed, mobile operators have more and more new network protocols flowing through 

their networks and nowadays there are more applications that generate traffic into 

modern networks. For example, at the time when Lincoln laboratory created these 

datasets, there was no torrent traffic which is nowadays causing most of the network 

traffic [35].  

 

Attacks in Lincoln Laboratory Datasets 

Both of the datasets contain four categories of attacks; denial of service (DoS), user to 

root (U2R), remote to user (R2U) and probing attacks. In addition to these four 

categories, the 1999 dataset contains a group which is called data. Full list of attacks 

with descriptions are in Appendix 2. 

Attacks that belong to the DoS category make the computing or memory resources 

in the targeted system too busy or full. In general, the attacks exhaust resources in such 

length that the use of the resources is completely denied to the legitimate users. [32] 

U2R attacks exploit vulnerabilities in the targeted system to gain a root access. What 

is similar to all of the attacks belonging to this category is that the attacker begins with a 

normal user account that is obtained by other means such as social engineering or 

phishing attacks. After accessing the targeted system with a legitimate user account the 

attacker begins to exploit vulnerabilities in the system that would eventually lead into a 

situation where the attacker is given root access rights. Common exploit is to cause a 

buffer overflow in which the targeted system tries to read data into the buffer without 

checking whether the data fits into the buffer or not. As a result the system crashes into 

a state where the user accessing the system can change the user account into 

administrator. [32] 

Attacks belonging to the R2U are remotely exploiting vulnerabilities in the targeted 

system in order to gain an unauthorised access. In general the attacker tries to gain a 

local access as a user in the targeted system. An example of an attack belonging to this 

category is a dictionary attack in which the attacker tries to repeatedly guess usernames 

and passwords in the targeted system. [32] 

Port scanning and network mapping are a good example of probing attacks. Both 

attacks try to find out information of the targeted system or network. In general the 

attacker tries to find out possible medium, for example an open port, which he or she 

could exploit. [32] 

Data category contains an attack called secret. It is an attack where a legitimate 

system user performs actions that he or she is able to do but which are not allowed 

according to the use policy. [32] 
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2.3 IDS in Telecommunications Networks 

IDS’s role in telecommunications networks is to enhance the overall security of the 

network together with existing security measures such as firewalls and antivirus 

scanners (see Section 2.2). IDS’s place in the telecommunications networks depends on 

what it is supposed to monitor and protect. For example, IDSes could be monitoring 

intrusions from either inside or outside the core network.  

2.3.1 IDS placement Challenges 

The placement of IDS depends on the type of the IDS. Host based IDSes are typically 

placed on elements that provide important services to the network. Network based 

IDSes on the contrary are more difficult ones. NIDS placement has to be balanced 

between network coverage and allocated resources. 

In access networks (see Figure 2.1) IDSes monitors for malicious payloads in transit 

through the network and intrusive subscribers whose actions could disturb the service 

which other subscribers are enjoying. In addition IDSes monitors for intrusions whose 

target is inside the core network.  

In a core network (see Figure 2.1) IDS monitors for intrusions that try to gain an 

access to the core elements such as gateways, HLR/VLR and subscriber charging. 

Access to these elements could harm the overall operation of the network. Preferable 

IDS type in the core network would be host-based IDS on important network elements. 

The HIDS instead of NIDS is preferred as it is known which elements are the most 

important ones and which also requires protection. It should be taken into account that 

in addition to monitoring the system the HIDS is located; it is also monitoring the 

network traffic from and to the host. 

If the used strategy is centralized IDS then its placement needs to be considered 

more carefully than in case of distributed IDS. In Figure 2.7 possible locations of IDSes 

in telecommunications networks are presented.  

These locations in Figure 2.7 are based on Cisco’s IDS sensor deployment 

considerations [36] in which the deployment is began by doing an analysis on network 

topology. The key factors are Internet access points, extranet access points, remote 

access and intranet separation. IDSes monitoring subscriber network provide security to 

all key factors. To enhance the overall security IDSes should be placed inside the core 

network, to monitor gateway towards Internet and extranets and in addition to these, 

host based IDSes should be considered in subscriber equipments.  

In addition to Cisco’s deployment considerations, a host-based IDS could be used in 

the user equipments such as mobile phones and computers. Miettinen et al. [37] 

proposed a unified IDS framework for mobile phones. The same framework could be 

used with other mobile devices as well. 
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Figure 2.7 Possible locations of IDSes in telecommunications networks 

2.3.2 Centralized Model 

The most common setup for IDS is to use one dedicated IDS, also known as centralized 

IDS, which is monitoring all the incoming and outgoing links in the network. In Figure 

2.8 this would mean that the central IDS would be in charge of all the intrusion and 

anomaly detection operations. 

Centralized IDS provides easier operation and management functionality in 

comparison to a distributed model when the network size and the amount of traffic are 

small. Scalability can become a problem when the network size grows.  

2.3.3 Distributed Model 

Distributed IDS model in telecommunications networks is presented in Figure 2.8 in 

which the whole intrusion and anomaly detection workload is distributed among IDS 

agents, also known as IDS sensor, together with the central IDS. [29] 

IDS agents could be used as sensors to pre-analyse network traffic and generate 

alarms from detected intrusions. These IDS agents could also pre-process the captured 

packets to enhance the efficiency of the Central IDS (CIDS). They could, for example, 

discard unnecessary information from the IP packet header fields. [29] 

For example Handley et al. [38] normalize IP packet header fields to detect skilled 

attackers that try to evade detection by exploiting ambiguities in the traffic stream. In 

addition to header modification, IDS agents could also generate additional information 

such as adding grades to alarms that would categorize the alarms into three groups 

depending on the level of seriousness of the detected intrusion.  



 21 

The Central IDS would be responsible for gathering information from IDS agents. 

CIDS would have a more advanced view of the network and its state and therefore it 

could detect coordinated network wide attacks. [29] 

 
Figure 2.8 Distributed intrusion detection model in telecommunications networks 

 

Distributed IDS model is able to scale up into large size networks, especially when the 

amount of monitored links is huge. Scalability is the most relevant feature in 

comparison to the centralized model. 
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3 FEATURES FOR IDS 

Before anomaly detection based IDS can raise an alarm, it needs to have some kind of 

model on what is normal traffic and what is not. It also needs to have predefined 

methods in which traffic is filtered and possibly modified in order to cope with the huge 

amount of data going through the network daily. This is why it is necessary to choose 

among the data what is relevant for monitoring and what is not. Feature extraction plays 

an important role in the choosing of relevant features for the IDS.  

The basic principle in feature extraction is that the fewer features there are to be 

monitored, the faster the IDS is. Vice versa the more features the IDS has to monitor the 

less accurate it is. Of course this is not an absolute truth as there are cases in which 

detection accuracy has increased after taking additional features into the monitoring.  

These cases are discussed in more details in Chapter 3.3. The importance of feature 

analysis is significant when evaluating the performance and detection rate of an IDS. 

For example network traffic contains features that are redundant or their contribution to 

the detection process is little. By reducing the amount of features the IDS’s 

computational speed is improved and the overall performance is increased. These 

principles are according to what is presented in the literature of the field. [39; 40; 41; 

42] 

3.1 Feature extraction 

Intrusion detection systems can either have univariate approach or a multivariate 

approach to detect intrusions depending on the algorithm used. In the univariate 

approach a single variable of the system is analysed. This can be, for example, port 

number, CPU usage of a local machine etc. In multivariate approach a combination of 

several features and their inter-correlations are analysed. [10] In addition based on the 

method the way in which features are chosen for the IDS can be divided into two 

groups; into feature selection and feature reduction. 

3.1.1 Feature Selection 

In the feature selection method the features are either picked manually from the data 

monitored or by using a specific feature selection tool. The most suitable features are 

selected by handpicking from the feature spectrum based on the prior knowledge about 

the environment that the IDS is monitoring. For example features that can distinguish 

certain type of traffic from the traffic flows are picked for the network traffic model 

training. 
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The idea behind the feature selection tools is to reduce the amount of features into a 

feasible subset of features that do not correlate with each other. Examples of feature 

selection tools are Bayesian networks (BN) and classification and regression tree 

(CART). Bayesian network is a probabilistic graphical model that represents the 

probabilistic relationships between features. [43] CART is a technique that uses tree-

building algorithms to construct a tree-like if-then prediction patterns that can be used to 

determine different classes from the dataset. [44] 

Feature selection process is illustrated in Figure 3.1 On the left there are the features 

(F0…FN) that are available from the data monitored, which is, for example, from 

network traffic. On the right side is the output (F0...FM) of the selection tool. The 

number of features in the output varies based on the selection tool used and the inter-

correlation of features in the input. Following the basic principles of feature analysis the 

number of features in the output (M in Figure 3.1) is in most of the cases less than the 

number of features in the input (N in Figure 3.1). However, it is possible that the output 

is equal to the input. 

 

 

Figure 3.1 Feature selection 

 

If the Lincoln laboratory dataset is taken as an example the feature selection tool will 

choose features from the network traffic header fields such as IP source address, source 

port number and other features described in Appendix 1. 

3.1.2 Feature Reduction 

In the feature reduction method a new set of features is extracted based on the features 

available from the data monitored such as network traffic data. The basic idea behind 

feature reduction method is to reduce the total number of features used in the network 

traffic model training. In general feature reduction means that during a certain period of 

time a number of different features are monitored and a new set of features are then 

calculated from this monitored data. For example the feature reduction tool could 

monitor number of packets to a specific destination, within a certain period of time. 

Then, once the monitoring period is over, a new feature (number of packets to that 

destination) is available for the IDS. 

Another example of a feature reduction method is a principal component analysis 

(PCA). PCA is an algorithm that checks and converts the data set for all the correlated 

variables into a set of uncorrelated variables, also known as principal components. [45] 

Feature reduction process is illustrated in Figure 3.2. On the left there are the 

features (F0…FN) that are available from the monitored data, for example, from the 
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network traffic. On the right is the output (V0…VN) of the reduction tool. The number 

of features in the output usually is less than in the input but it might as well be the same. 

The new features (V0…VN), can be calculated based on a single feature or a 

combination of multiple features (F0…FN).   

 

 

Figure 3.2 Feature reduction 

 

KDD cup 1999 dataset can be thought as an example of feature reduction. The KDD 

cup consists of features (see Table 3.1) that are calculated from the network packet-

based traffic in the Lincoln laboratory dataset to a flow-based traffic. These converted 

features are used for example in machine-learning based IDSes.  

3.1.3 Challenges in Feature Extraction 

The environment in which the feature extraction is done is a mobile operator’s network 

with real people (subscribers) using it. This means that the network traffic contains user 

confidential information. For example in Finland user network traffic is protected by the 

data protection law [46]. Because of this, only a limited analysis for the network traffic 

can be done, meaning that a deep packet analysis cannot be done. In general, only the 

header fields of the packets can be checked but not the user data in the payload.  

Scalability is an issue with IDSes.  Because of the huge amount of data flowing 

through the mobile operator’s network, it is not an easy task to find out the right 

information needed for an IDS. The problem is to find an answer to the question: “What 

features need to be taken into account when calculating or analysing whether the 

activity is malicious or not?” 

In telecommunications networks link traffic can reach up to 150 Gbps traffic rates 

while current IDSes are capable of monitoring only some parts of the traffic. For 

example Sourcefire’s IPS is capable to monitor network traffic speeds from 5Mbps up 

to 20 Gbps [26]. In order to cover the whole bandwidth, the traffic needs to be divided 

somehow and monitored by multiple IDSes. Then again the information provided by the 

IDSes needs to be correlated somehow which again adds another challenges to the 

whole intrusion and anomaly detection process. 

Based on prior research on IDSes it is clear that either one of the techniques alone 

cannot detect everything but the combination of the both is the most promising 

approach. For example misuse detection can be used to filter known threats from the 

traffic to make it easier for the anomaly detection system to focus on the unknown. 

Even though IDSes have been researched over 20 years, we still do not have an 

answer to the question of what features should be monitored. So far different kinds of 
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methods and algorithms have been developed for anomaly detection but the focus has 

been on making them more efficient. Almost all of them are lacking the same 

information; what features are important for IDS, especially in telecommunications 

networks? For some reason information on the used features is not easily found from 

IDS research publications. No matter what the reason is the result is the same; every 

researcher has to figure out by themselves which features should be used for the 

monitoring. 

3.2 Audit Data Sources 

IDS’s operation is based on data analysis. In telecommunications networks there is a 

wide variety of different sources of data that produce information, or features to be 

more specific, that the IDS can analyse for intrusions and anomalies. In general there 

are two main sources of audit data that IDSes are using; network data and host-based 

security logs [24]. 

3.2.1 Network Data 

Network data is collected using packet and flow capturers. Packet capturers can be 

either software or hardware based products. Wireshark and Tcpdump are the most 

known freely available software based packet capturers. In addition to these two, most 

of the manufacturers of network elements such as routers and switches are also 

providing packet and flow capturers as a product that can be attached to their 

equipment. For example, Cisco provides a product called NetFlow [47] that can capture 

network traffic flows. The flow capturers monitor packet data and create flow 

information based on the communication between two endpoints. How flow is 

understood varies based on the monitoring system. The parameter that defines when a 

flow ends and a new one begins is the idle time between the communications of two 

endpoints and this time changes within monitoring systems. In addition there are tools 

that convert the packet data into network flow data. An example of such a tool is Argus 

[48].  

 

Argus 

Argus is a combination of two elements; argus-server and a set of argus-clients. The 

server is responsible of reading and converting the network traffic from packet data into 

flow based data. The argus-server can be used to monitor network traffic in real time or 

it can read packet data files that are stored in tcpdump- or pcap-format. [48] 

Argus-clients are small programs that can read and extract additional information 

from the data flow created by the Argus-server. For example, the client program, 

racluster, can find the top talkers (communicates the most) and listeners (with less 

activity) within the flow data. The most relevant client program is named “Read argus” 

(ra). Basically it reads the Argus-based data flow and displays the flow information on 

the screen or writes it into a file. [48] 
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3.2.2 Host-based Security Logs 

Logs contain records of events that have occurred within an organisation’s system or 

network. Logging systems were created for the management and network failure 

detection point of view. As such they were not designed to be used as a security feature. 

Nevertheless, nowadays logs are also used for security purposes.  

SNMP MIB can be used as an IDS data source (see Section 3.3.3). With SNMP it is 

possible to query the status of a network element or the element might independently 

send updates of its own status. In general the management entity requests the status of a 

network element using SNMP. The network element then sends log entries that 

correspond to the received request with SNMP. [49]  

Another example of logs usage in anomaly detection is described by Höglund [50]. 

Höglund used UNIX user account logs to identify network user behaviour patterns and 

to recognize when the user’s behaviour changes significantly from the normal pattern. 

[50] 

In telecommunication networks there are multiple architectural elements (see Figure 

2.1) that produce information that could be used in intrusion and anomaly detection. 

Just to name a few there are AAA-server, databases, gateways, SGSN, MME, Charging 

and HLR/VLR. These elements generate security and management logs that can be used 

in intrusion and anomaly detection. For example the information gathered from the 

network elements could be used together with the alarm reports generated by IDS to 

find the root cause for the intrusion or anomaly. 

As most of the network elements generate logs there are other sources of security 

logs as well. Kent et al. [51] define three categories of audit data sources that generate 

security logs; security software, operating systems and applications.  

 

Security Software 

Network- or host-based security software can be classified, for example as  antimalware 

program, a firewall, a proxy server, an intrusion detection and prevention system and an 

authentication server. Security software’s main purpose is to provide security 

information that can be used by other security solutions such as  IDS. [51]  

Firewalls and antimalware software generate logs on events when suspicious or 

malicious activity is detected. Proxy servers generate logs from network connections 

and web requests associated with the connections. In addition if the proxy server has 

user authentication functionality it will also log user credentials from the persons who 

are accessing web resources. Proxy servers with AAA functionality are especially useful 

in audit trailing.  Intrusion detection and prevention systems produce logs as any other 

security software. [51] These logs can be used for example in a distributed IDS 

architecture (see Section 2.3.3) where the central IDS collect the logs from the IDS 

sensors.  
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Operating Systems and Applications 

Computers, mobile devices, servers and networking devices such as routers and 

switches are operated by an operating system. Applications are operating on the top of 

the operating system and are therefore able to access some of the information that the 

operating systems are generating. While performing operational actions the operating 

systems and applications generate logs from system events and audit records. [51] 

System events are generated usually from successfully or unsuccessfully completed 

actions, status of the system and services that are running. Audit records contain 

information about authentication operations such as successful or failed user 

authentication. In addition audit records are generated with information on what files 

the user is accessing and with which privileges. [51] 

3.3 Features used in Prior Art 

Features used in prior research on IDSes are roughly organized into five categories; 

features based on flow data, packet data, SNMP data, features collected from UEs and 

features used in ad-hoc network monitoring.  

3.3.1 Flow-based Features 

Lakhina et al. [52] analysed events that affected to the distribution of traffic features and 

marked these as anomalies. They monitored network-wide backbone traffic using the 

following IP packet header data:  

 

 source IP address 

 destination IP address 

 source port number 

 destination port number. 

 

They grouped known anomalies into seven categories based on the type of the 

detected attack. These were DoS, Flash Crowd, port scan, network scan, outage events 

and worms to name few. The classification was done using multiway subspace method 

together with the k-means clustering algorithm. The multiway subspace method is able 

to isolate correlated changes on the four IP packet header features (source and 

destination IP address, source and destination port number) between traffic flows. [52]  

The same features are also used by Fontugne et al. [20] in their image processing-

based approach to detect anomalies. They compared their proposed anomaly detection 

method against a statistical-based method proposed by Dewaele et al. [53]. The 

comparison was done using a network traffic data collected from Trans-Pacific. 

Fontugne et al. [20] categorised the results in similar way than Lakhina et al. [52] did 

but instead of grouping the detected anomalies into seven groups, they grouped them 

into 15. 
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Gorton [54] used two detection methods to analyse a router log data; a single event 

and threshold analysis. The single event analysis raises a flag of intrusive activity when 

a single event is discovered. In the threshold analysis intrusive activity is flagged with 

respect to accumulated activities. In his analysis he collected syslog messages from 

Cisco routers and transformed the log data into a set of features that are: 

 

 time from the syslog 

 status that can be either permitted or deny 

 protocol identifier 

 type of service 

 source IP address 

 source port number 

 destination IP address 

 destination port number 

 number of ICMP messages 

 number of packets. 

 

With single event analysis Gorton was able to detect spoofed connection attempts, 

connection attempts to known Trojan horses, connection attempts to known vulnerable 

ports, the Land DoS attack, TCP-broadcasting, the echo-chargen attack, ICMP and UDP 

echo request. With threshold analysis Gorton was able to detect SYN flooding, network 

mapping and port scans to name few. [54] 

Knuuti [55] compared the usability and performance of three different IDSes in a 

large IP networks. The evaluated IDSes were Snort, Bro-IDS and TRCNetAD. Snort 

and Bro-IDS are capable of analysing traffic in real-time when TRCNetAD is a non-

real-time anomaly detection based IDS. [55] Features that Knuuti used are [55]: 

 

 IP address 

 time stamp 

 number of ICMP packets 

 number of UDP flows 

 number of TCP connections 

 amount of received data 

 amount of sent data 

 number of received packets 

 number of sent packets 

 number of different port numbers used over 1024 

 number of port numbers used over 1024 

 number of different port numbers used below 1024 

 number of port numbers used below 1024 

 number of receiving sequences from different IP’s 
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 number of receiving sequences 

 number of sending sequences to different IP’s 

 number of sending sequences. 

 

Knuuti conducted two, one week long, traffic capturing periods to collect data for 

the IDSes. From the data collected he then generated time series that are 60 minutes 

long in order to create clusters and analyse the data with self-organising maps. Snort 

detected over 1.5 million intrusions during the  one-week traffic capturing period. Snort 

was able to detect the following attacks:  

 

 buffer overflow attacks 

 Trojan  

 denial of service 

 VoIP attacks 

 Heap overflow attack 

 DNS spoofing attack 

 spyware. 

 

Bro-IDS detected approximately eight thousand intrusions which were address and 

port scan. TRCNetAD detected 150 thousand anomalies during the same time period. 

Knuuti also evaluated alarm similarities between the detectors and his conclusions were 

that TRCNetAD was able to detect some of the port and address scans that Bro-IDS 

discovered but there were no similarities between Snort’s and TRCNetAD’s findings. 

[55] 

 

KDD CUP 1999 Studies 

As mentioned in Section 2.2.8, the KDD cup is widely used in evaluating the IDSes’ 

performance and detection rate. The same fundamental problem exists with these 

studies as described in Section 2.2.7. Most of the studies are only describing the 

achieved results of the IDS not how they managed to reach them. What creates even 

more confusion is that in some of the studies the researchers are implying that they are 

using all or just a specific amount of features from the 41 features in KDD cup. 

Comparison of these studies is therefore impossible based on the data available. 

However, because of KDD cup dataset’s popularity, there are also studies available on 

the Internet which do provide  detailed information about the features and the methods 

that they used. Such studies are presented in the field literature [39; 40; 41; 42; 56].  

These studies evaluate optimal feature subsets of each of the five categories (see 

Section 2.2.8) in the Lincoln laboratory 1998 dataset. The features extracted for the 

KDD cup 1999 dataset are listed in Table 3.1. The features in Table 3.1 were converted 

into data flows from the packet data in 1998 Lincoln laboratory dataset using a Bro-IDS 
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[57, p. 146]. The Bro-IDS [58] is very much similar to Argus discussed in Section 3.2.1 

with the difference that Bro is also an IDS. 

 

Table 3.1 Features in KDD cup 1999 dataset [34] 

Label Feature Label Feature Label Feature 

A duration O su_attempted AC same_srv_rate 

B protocol_type P num_root AD diff_srv_rate 

C service Q num_file_creations AE srv_diff_host_rate 

D flag R num_shells AF dst_host_count 

E src_bytes S num_access_files AG dst_host_srv_count 

F dst_bytes T num_outbound_cmds AH dst_host_same_srv_rate 

G land U is_hot_login AI dst_host_diff_srv_rate 

H wrong_fragment V is_guest_login AJ dst_host_same_src_port_rate 

I urgent W count AK dst_host_srv_diff_host_rate 

J hot X srv_count AL dst_host_serror_rate 

K num_failed_logins Y serror_rate AM dst_host_srv_serror_rate 

L logged_in Z srv_serror_rate AN dst_host_rerror_rate 

M num_compromised AA rerror_rate AO dst_host_srv_rerror_rate 

N root_shell AB srv_rerror_rate     

 

Zainal et al. [39] evaluated in their study the detection rate of IDSes by using five 

optimal feature subsets extracted from the 41 features in the KDD cup dataset (see 

Table 3.1). For the extraction they used five different methods to calculate and select six 

most important features for each subset.  

They extracted two of the optimal feature subsets by using particle swarm 

optimisation (PSO) and rough set theory (RST). The remaining three subsets were 

chosen according to the study by Sung et al. [56] in which they used support vector 

decision function ranking (SVDF), linear genetic programming (LGP) and multivariate 

regression splines (MARS) to select optimal feature subsets. [39, see 56] The extracted 

features are summarised in Table 3.2 (SVDF, MARS, LGP, Rough set and Rough-

PSO). 

 PSO is a population-based search algorithm that organises particle swarms into an 

optimal regions based on the historical behaviour of each particle and its neighbours. 

RST is a feature selection tool to find data dependencies and to reduce the number of 

features in a dataset. [39] SVDF, LGP and MARS are used in a similar fashion to select 

optimal feature subsets to reduce the number of features in a dataset. [56] 

Mukkamala et al. [40] used two feature ranking and selection methods to choose 

feature subsets for each attack type groups described in APPENDIX 2 Appendix 2. 

These feature selection methods were performance-based ranking method (PBRM) and 

support vector decision function ranking method (SVDFRM). The selected features are 

summarised in Table 3.2 (SVM, SVM (PBMR) and SVM (SVDFMR)). 

In PBRM in every loop one feature is dropped from the feature set and the 

remaining feature set is used to train the IDS. Then this IDS’s performance is evaluated 

and if the performance is improved the dropped feature is marked as non-important 

feature. In case the performance is lowered the dropped feature is marked as an 
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important feature and is taken back to the feature set. This iteration is continued until all 

the features in the feature set are tested and evaluated. [40]  

In SVDFRM the contribution of each feature to the classification is ranked by the 

weight of contribution to the anomaly. If one feature affects significantly to the 

classification it is then given a higher weight value than to the feature whose influence 

to the classification is minor. The weight of each feature can be extracted from the 

support vector decision function. [40] 

Chebrolu et al. [41] evaluated the performance of two feature selection algorithms 

Bayesian networks (BN) and classification and regression trees (CART) (Section 3.1.1) 

and their ensemble. The selected features are summarised in Table 3.2 (BN, CART and 

BN+CART). Their conclusions were that the detection rate changes significantly 

between the feature selection methods and therefore an IDS should be modularly 

designed. In general the modularity means that each module would use different feature 

subsets to detect a specific group of the attack categories.  

According to studies presented in the literature of the field [39; 40; 41; 42; 56], it 

can be said that the detection rate for different attack types is higher by using different 

feature sets for each attack type category instead of using the same features for all the 

attack types. In addition it can be said that by using less features it is possible to reach 

higher detection rate than by using all of the available 41 features in KDD cup dataset. 

More detailed results are presented in Appendix 3.  

 

Table 3.2 Features used in KDD CUP 99 studies 

Method 
No. 

features Features 

SVDF 6 B,D,E,W,X,AG 

MARS 6 E,X,AA,AG,AH,AI 

LGP 6 C,E,L,AA,AE,AI 

Rough set 6 D,E,W,X,AI,AJ 

Rough-
PSO 6 B,D,X,AA,AH,AI 

SVM 41 ALL 

SVM 
(PBMR) 31 

A,C,E,F,H,I,J,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,
AA,AB,AC,AF,AG,AI,AJ,AL,AM,AN,AO 

SVM 
(SVDFMR) 23 

A,B,C,D,E,F,J,L,Q,W,X,Y,Z,AA,AB,AC,AE,
AG,AH,AJ,AL,AM 

BN 41 ALL 

BN 17 A,B,C,E,G,H,K,L,N,Q,V,W,X,Y,Z,AD,AF 

BN 12 C,E,F,L,W,X,Y,AB,AE,AF,AG,AI 

CART 41 ALL 

CART 17 A,B,C,E,G,H,K,L,N,Q,V,W,X,Y,Z,AD,AF 

CART 12 C,E,F,L,W,X,Y,AB,AE,AF,AG,AI 

BN+CART 41 ALL 

BN+CART 17 A,B,C,E,G,H,K,L,N,Q,V,W,X,Y,Z,AD,AF 

BN+CART 12 C,E,F,L,W,X,Y,AB,AE,AF,AG,AI 
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3.3.2 Packet-based Features 

Kabiri et al. [59] have conducted research on identifying effective features for intrusion 

detection. They have done related research for detecting probing attacks [60] and for 

detecting smurf attacks [61]. Results from these researches are used in [59] as well.  

Kabiri et al. [59] used Lincoln laboratory dataset 1998 to select optimal features 

from the IP and TCP packet header fields. Appendix 1 lists all the 32 basic features that 

they extracted from network traffic header fields. They used principal component 

analysis (PCA) method to select optimal feature subsets from the 32 features for each of 

the five categories (see Section 2.2.8) in the Lincoln laboratory dataset. The suggested 

feature subsets are listed in Table 3.3.  

In their work Kabiri et al. [59] investigated the information value for each category 

and their conclusion for future work stated that these features should be experimented in 

an intrusion detection system. In addition a comparison of accuracy and efficiency 

should be done using the feature subsets and by using all the 32 features.  

 

Table 3.3 Features Kabiri et al. used [59]; [60] 

No.  Feature  DoS U2R R2L Probing Normal 

1 Protocol  x     x   

5 Coloring_rule_name  x x   x   

10 IP_Total_Lenght        x   

12 MF_Flag_IP   x   x   

13 DF_Flag_IP    x   x   

16 Protocol_no  x         

19 Stream_index  x         

24 Urgent_flag    x x     

25 Ack_flag        x x 

26 Psh_flag        x   

27 Rst_flag      x x x 

28 Syn_flag  x x   x   

29 Fin_flag        x   

 

Carrascal et al. [62] used self-organising maps together with learning vector 

quantization in their machine-learning based method to detect intrusions. They 

evaluated their anomaly detection efficiency by using Lincoln laboratory data sets as a 

testing data. Their system’s detection rate was 72% and false positive rate 2%. In 

comparison they provided a list of other AD methods whose detection rate was better 

than their method’s but with a higher false positive rate. Features that Carrascal et al. 

used were [62]: 

 

 codification of TCP flags  

 IP protocol number 

 IP type of service 
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 TCP window 

 packet size 

 codification of <source port / source IP address, destination port / destination IP 

address> 

 destination port 

 source port 

 source IP 

 destination IP 

 codification of TCP options. 

 

Most of the features are self-explanatory but the coded features are not as clear. 

Carrascal et al. [62] combined features that have multiple parameters such as TCP flags 

and TCP options into single features. The authors do not explain in details how the 

codification is done so one can only guess what the exact features are in reality.  

3.3.3 SNMP-based Features 

Lee et al. [63] used Simple Network Management Protocols Management Information 

Base (SNMP MIB) [49] to detect intrusion. SNMP is a protocol used in TCP/IP-

network management and the idea to use it as a security monitoring tool is intriguing. 

SNMP logs are generated in network devices in any case and by using the already 

available logs do not add new requirements to the network infrastructure. By using 

SNMP MIB, some of the challenges in network intrusion detection can be avoided. 

There are no privacy concerns as user confidential information is not needed for the 

analysis. Also the data rates are low compared to network traffic amounts. SNMP MIB 

does not require any new hardware as the SNMP is widely supported. [63] 

In their work Lee et al. [63] used 12 features from SNMP MIB in intrusion 

detection. Traffic on interfaces is estimated by analysing the correlation between IP 

group objects and interface group objects of SNMP MIB. Features from SNMP MIB 

that Lee et al. used are described in Table 3.4. In conclusions they proposed that only IP 

group features could be used to enhance the analysis performance. [63] 

 

Table 3.4 SNMP MIB features [63] 

Feature Description 

ipInReceives 

Total number of input datagrams received from interfaces, including those 

received by error [64] 

ipOutRequest 

Total number of IPv4 datagrams which local IPv4 user protocols (including 

ICMP) supplied to IPv4 in requests for transmission [64] 

ipForwDatagrams 

Number of input datagrams for which this entity was not their final IPv4 

destination, as a result of which an attempt was made to find a route to 

forward them to that final destination [64] 
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ipOutDiscards 

Number of output IPv4 datagrams for which no problem was encountered 

to prevent their transmission to their destination, but which were discarded 

[64] 

ipOutNoRoutes 

Number of IPv4 datagrams discarded because no route could be found to 

transmit them to their destination [64] 

ipFragOKs 

Number of IPv4 datagrams that have been successfully fragmented at this 

entity [64] 

ipFragFails 

Number of IPv4 datagrams that have been discarded because they 

needed to be fragmented at this entity but could not be, e.g., because their 

Do not Fragment flag was set [64] 

ipFragCreates 

Number of IPv4 datagram fragments that have been generated as a result 

of fragmentation at this entity [64] 

ifInUcastPkts 

Number of packets, delivered by this sub-layer to a higher (sub-) layer, 

which were not addressed to a multicast or broadcast address at this sub-

layer [64] 

ifInNUcastPkts 

Number of packets, delivered by this sub-layer to a higher (sub-) layer, 

which were addressed to a multicast or broadcast address at this sub-

layer [64] 

ifOutUcastPkts 

Total number of packets that higher-level protocols requested be 

transmitted, and which were not addressed to a multicast or broadcast 

address at this sub-layer, including those that were discarded or not sent 

[64] 

ifOutNUcastPkts 

Total number of packets that higher-level protocols requested be 

transmitted, and which were addressed to a multicast or broadcast 

address at this sub-layer, including those that were discarded or not sent 

[64] 

 

3.3.4 Features used in User Equipment monitoring 

A combination of host based intrusion detection (HIDS) and remote IDS server is a 

system proposed by Miettinen et al. [37] and later used by Schmidt et al. [65] where 

user equipment (UE) has a host-based IDS monitoring the UE’s behaviour and 

forwarding these monitored features to a remote IDS server. Remote server analyses the 

features for anomalies such as worms and other malware. [37] Features that Schmidt et 

al. monitored are [65]: 

 

 amount of available RAM 

 number of created TCP/IP connections 

 user idle time in seconds 

 CPU usage in percent 

 battery charge level 

 Boolean user idle indicator that is true if the user is idle and false if not 

 amount of available hard disk space 
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 amount of running threads 

 mobile phone network cell ID 

 number of installed applications 

 amount of opened Bluetooth connections 

 amount of sent SMS messages 

 amount of sent MMS messages 

 number of received MMS messages. 

 

Transfer of monitored features is proposed to bypass the processing and memory 

limitations of UEs. UEs are capable of monitoring its own system behaviours but they 

are lacking processing capacity for the intrusion detection analysis. Remote IDS server 

is capable of analysing inputs from multiple UEs. [37] 

3.3.5 Features used in Ad-Hoc Network monitoring 

Huang et al. [66] describe a method for detecting routing anomalies in Ad-Hoc 

networks. They created a list of attribute sets for two different groups; non-traffic 

related and traffic related. [66] 

 

Non-traffic related attributes are [66]: 

 time stamp 

 node movement velocity (scalar) 

 route add count for routes newly added via route discovery 

 route removal count for stale routes being removed 

 route find count for routes in cache with no need to re-discovery 

 route notice count for routes added via overhearing 

 route repair count for broken routes currently under repair 

 total route change rate within the period 

 average length of active routes. 

 

Traffic related attributes are [66]: 

 packet type data, route (all), ROUTE REQUEST, ROUTE REPLY, ROUTE 

ERROR and HELLO messages 

 flow direction received, sent, forwarded and dropped 

 sampling periods 5, 60 and 900 seconds 

 statistics, measures, count and standard deviation of inter-packet intervals. 

 

The traffic related list of attributes creates a list of 132 different features. Formula 

that is used to calculate the amount of different features is (6 x4 - 2) x3 x2. The same 

features are used by Huang et al. [67].  
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Wang et al. [68] used similar attributes as Huang et al. [66] but with a slight 

difference. They divided packet type data into two separate types; data size and data 

number. In addition, they dropped the statistics, measures, count and standard deviation 

of inter-packet intervals from the monitored attributes in order to decrease the total 

amount of features which would be 150 in total. Without those attributes the total 

amount of monitored features is 75. In their calculations Wang et al. have further 

decreased the total amount of features from 75 to 25. [68] 
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4 FEATURE SELECTION 

The environment where the IDS is located affects significantly to the features that can 

be used by IDS. In Section 3.3 a set of different feature lists were described. It is clear 

that different sources of data produce different kind of features. For example, if the 

network traffic capturer is a flow-based capturer it provides completely different 

information than a packet capturer does. In addition to network traffic, there are other 

sources of data (see Section 3.2) from which a subset of features is selected or extracted 

using feature analysis methods described in Section 3.1. 

Three approaches are used in this thesis to select the relevant features from the 

network traffic. These are; analyse the feature list described in Section 3.3, analyse 

different attack methods and how they affect to the network traffic and evaluate what 

other information the field literature holds on this topic.  

4.1 Feature Analysis 

As mentioned in Section 3.1, there are two different trends on how to extract the 

features. They can be chosen by using an algorithm that calculates correlated features 

and reduces the redundancy in the dataset (feature reduction) or new features can be 

extracted from the already available ones (feature selection).  

In this thesis the feature selection is done by analysing the attacks within the Lincoln 

laboratory 1999 dataset (see Section 2.2.8) and how each attack are affecting to the 

network traffic. Through the scenarios a subset of features that are the most relevant to 

the corresponding attack category are then chosen.   

The method used to monitor network traffic is to use flow-based data. There are 

many advantages in using flow data instead of packet data. The major advantage comes 

from the reduced need of storage space for the data. Network flows requires a one tenth 

of the original packet-based data which is a huge difference. Another advantage is that 

the flow data does not contain payload data at all. So the user privacy is no longer a 

problem. Also the traffic volumes such as the number of packets and bytes between 

destinations are easily extractable from the flow data so extra calculation is not 

therefore needed. The disadvantage with this data is of course the loss of individual 

packet information such as the size of the packet, structure of the packets in order to 

detect malformed ones etc. However these can be monitored by other methods such as 

misuse detection based IDSes.  
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4.1.1 Attack Scenarios 

By analysing known attacks and their influence to the normal network traffic it is 

possible to define which features are affected and therefore should be monitored. The 

idea behind this approach is to define the characteristics of a specific attack group. This 

is done by analysing the attacks in Lincoln laboratory 1999 dataset (see Section 2.2.8). 

The attack categories in the dataset are: 

 denial of service 

 probing 

 user to root 

 remote to user 

 data 

 

Denial of Service 

DoS attacks affect to the usability and reach ability of network services such as web, 

mail, voice and data. These attacks also affect to the reputation of a CSP. In most cases 

the attack itself is not detectable before the service or element in the network is 

overwhelmed by the amount of data it receives. Despite this fact there are some patterns 

that might be detectable.  

According to Depren et al. [69] some of the DoS attacks are detectable by 

monitoring from the traffic flows the amount of data received by the destination in 

comparison to the amount of data sent by the source. In normal case the amount of sent 

data is around 40-50 bytes and as well the amount of received data is around 40-50 

bytes. In a Dos case, the amount of bytes sent remains on the same level of 40-50 bytes 

but the amount of bytes received is zero.  

The Lincoln laboratory dataset contains multiple DoS attacks that use different 

methods and techniques to crash the targeted host or service. In the following 

paragraphs some of the attacks and their influence to the network traffic are discussed. 

In addition to these attacks there are few others in the Lincoln data but their influence to 

the network traffic is either similar to the ones discussed below or the detection requires 

DPI which is not possible to do because of the user privacy constraints. 

Using HTTP it is possible to cause a DoS state. This can be achieved by inserting 

multiple (more than 20) headers into a single HTTP-request message. In Lincoln 

laboratory dataset the attack Apache2 sends a HTTP-request that contains 10000 

headers in a single message. [32] 

The attacker sends a TCP SYN-message that has the same address as the source and 

destination. The land attack requires only a single packet sent to the destination. This 

attack is not anymore feasible as the new systems can cope with these messages. But in 

case of a mistake in the system code or reuse of an old one, this might still be feasible 

even today. This is why these packets should be monitored within the network traffic. 

[70] 
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ICMP-messages with a larger payload than 64kB might cause unpredictable 

reactions in the targeted systems. This attack, also known as ping of death, was 

applicable to older operating systems that could not cope with abnormal ICMP-

messages. A malformed ICMP-message caused freeze, reboot or crash on the 

destination system. Modern operation systems are not affected anymore by this attack 

but it is still possible that some behave abnormally when oversized ICMP-message is 

received. Therefore these messages should be monitored. [71] In addition other 

protocols should be monitored as the same method used with ICMP can be used with 

other protocols as well. Targa3 is an example of tool that generates malformed IP 

packets [72].  

In smurf attack the targeted host is flooded with multiple ICMP response messages 

from multiple sources. The attack requires three entities, the attacker, middleman and 

the destination. The attacker sends ICMP echo request packets to the middleman with 

the target host as the source address. The middleman then sends response messages to 

the targeted host. In order for this attack to cause a DoS scenario to the target, the 

attacker needs to send multiple messages to multiple middlemen. These middlemen 

would then send a large number of response messages to the target that it would not be 

able to cope with the number of received messages. This kind of distributed attack is 

also known as distributed DoS. Smurf attack can be detected when a large number of 

ICMP echo replies are sent to a single destination. [73] 

SYN-flooding together with IP spoofing attack is an example of DoS. In SYN-

flooding the attacker sends multiple SYN-messages to the targeted server with a 

spoofed IP source address. The server tries to respond to these SYN-messages with a 

SYN-ACK-message and waits for ACK-message from the source. Because the source 

address is spoofed, the server will never get an answer to the SYN-ACK-message. The 

server creates a transmission control block (TCB) state that is reserved for each 

connection and is released after the connection is closed (received an ACK-message). If 

the attacker keeps on sending SYN-messages, the TCB-table begins to fill and after a 

while the table is full of these half-open connections and any further coming 

connections are rejected. TCB is emptied within a certain period of time but this does 

not help if the attacker keeps on sending SYN-messages with a spoofed IP address. [74] 

Detecting a SYN-flooding attack might be difficult as the messages itself look 

legitimate. Still there are some clues that might give a hint of the ongoing SYN-flooding 

attack. One way, of course, is to notice that the targeted host is not reachable. This is, of 

course, the outcome of the attack and is not therefore the best way to find out that 

something malicious has happened. Another way to find out that a possible SYN-

flooding attack is ongoing is to check host’s state tables. If there are too many 

connections in SYN_RECEIVED state it might be because of a SYN-flooding attack. 

[74] 

Flash crowd is an attack that does not belong to the attacks within the Lincoln 

laboratory data but is a very common root cause for a DoS state in a service. Therefore 

it is discussed also in this context. Flash crowd is an attack that is based on massive 



 40 

amount of people requesting a connection or service from a single destination. The 

amount of requests becomes too large for the destination to handle which will 

eventually lead into a DoS state. Flash crowd can develop intentionally or 

unintentionally. Intentionally caused flash crowd attack is done by leading people or 

computers to try to connect to a single service at the same time. Example of an 

unintentionally created flash crowd happens often when the national lottery with a huge 

winning prize is drawn and people are trying to see the results from the web pages. 

Flash crowd attacks can be detected from the network traffic amounts and especially 

from the amount of service request within a short period of time [75]. 

In general most of the DoS attacks require multiple packets sent to the targeted host 

which will cause a memory and processing overloads, reboots etc. abnormality that 

prevents users accessing the service. There are though examples of single packets 

causing a crash on the destination such as in case of ping of death attacks. The features 

that should be monitored for DoS attacks are: 

 Amount of  received and sent bytes 

 Number of connection from multiple sources to a single destination 

 Number of packets to a single destination 

 Number of flows to a single destination 

 ICMP packet size (not detectable in flow data) 

 Malformed packets such as HTTP messages with multiple header fields (not 

detectable in flow data) 

 

Probing 

Network mapping and probing are examples of reconnaissance attacks where the 

attacker tries to map out IP addresses and operating systems that are in use. In addition, 

the attacker tries to find out what services the computers are providing. Network 

mapping means an action where the attacker tries to map out the infrastructure of the 

network. To do this, the attacker is therefore targeting all the computers within the 

network. However, probing is an attack that tries to find out information from a single 

computer.  

By conducting network mapping and probing attacks the attacker tries to find out all 

the possible means and methods that it can use to perform other attacks such as denial of 

service or gaining an unauthorised access to the inner network. Although 

reconnaissance attacks are not as serious threat as DoS attacks are, t they are still worth 

monitoring, because they are an omen for more harmful activity.  

To send a single ICMP Echo Request message is the most common way to find out 

if there is a computer having this IP-address. This kind of network mapping attack is 

easily detected by firewalls and therefore does not pose a significant threat to the 

network.  

A more sophisticated method is to reconnaissance through a port that uses TCP-

protocol and communications through this port is allowed to pass firewalls. By sending 

messages through this port it is possible to map every computer inside the network. For 
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example, if Telnet connections are allowed through port number 23, the attacker could 

send TCP SYN-messages to the computers through this port. This kind of an attack is 

easily detectable if the attacker sends multiple messages within a short period of time. If 

the attacker distributes the reconnaissance messages and randomises the time between 

the packets, it is then more difficult to find out that these individual messages are part of 

a reconnaissance attack. Especially if the attacker is only interested in finding a small 

group of computers inside the network instead of trying to find every possible computer, 

it would be even more difficult to detect the attack. [76] 

By using a different TCP flag option (ACK) the attacker could make it look like he 

is responding to connection requests that would look like a legal action. In this case the 

attacker would send TCP messages with ACK flag through the same port (23) likewise 

previously to the computers within the network. To make the attack even more 

sophisticated the attacker could use a specific source port number such as 80 to mimic a 

web server response messages. [76] In order to detect these reconnaissance attacks the 

IDS or firewall would have to be keep track of the connection states. In a traffic flow 

between two entities this means that if there are a lot of ACK-flagged TCP messages 

coming in without any SYN-flagged TCP messages ever send, the states are incorrect 

and the messages are part of reconnaissance attack. The attacker could also use RESET 

flags to achieve the same goal as was with ACK and SYN flags. RESET messages pose 

a greater threat than the others as they are not always monitored by firewalls and other 

monitoring systems. In case the firewalls or IDSes are stateless they might allow these 

messages go through to the inner network.  

By scanning all or just a specific group of ports from the targeted computer, the 

attacker tries to find out if there is an open port or service that it can exploit. In addition 

to finding out what ports are in use or open, the attacker tries to find out what versions 

of the services are used. This information is valuable for the attacker because it can then 

find out what are the known vulnerabilities with the specific version of the service. [77] 

Port scanning itself can be detected easily if the scanning is a constant activity, 

meaning that the attacker frequently sends packets to multiple ports on a single host. If 

the attacker distributes the port scanning attack it is then more difficult to detect. For 

example, the attacker might send a single packet to the destination and wait for a long 

period of time before sending another packet. IDSes without the knowledge of the past 

are in trouble detecting this kind of single packet attacks. Another version of distributed 

port scan attack is to use multiple sources to perform the scan and then combine the 

results afterwards. Again if the attack is conducted within a short period of time it is 

more detectable than when the time between packets is longer. [77] Other means to do a 

reconnaissance are social engineering, phishing and passive eavesdropping of network 

traffic. However, these attacks are not detectable by monitoring the network traffic. 

Network mapping and probing attacks are based on methods that either use single 

packets or multiple packets. With a stateful firewall or IDS it is possible to easily detect 

most of the attacks belonging to this group. The features that should be monitored for 

probing attacks are: 
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 State of the connections 

 Number of ports accessed by a single source 

 Number of ICMP packets from a single source  

 TCP flag combinations 

 

Attacks against Mail or Web Servers 

This group of attacks is a combination of DoS and probing attacks which are targeting 

services in the monitored network. Attacks in this category are web and mail bombs. 

Both of the attacks are relying on the same technique to cause a crash or attenuation of 

service in the targeted host. In both cases the attacker sends multiple messages (mail or 

web request) to the target service. Once the amount of received messages becomes too 

large to handle the targeted service’s quality of service will suffer and in worst case the 

service crashes. [32]  

Password guessing can be categorised in this category as the attacker tries to gain an 

unauthorised access to the CSP’s services. Like in network mapping, the attacker could 

try to guess the password and gain an access to the service by brute force that would 

require multiple service requests within a short period of time. The attacker might as 

well distribute the password guessing by sending single requests once in a while with 

randomised time difference. Distributed attacks are more difficult to detect than brute 

force attacks. With a host based IDS the targeted system can keep track on the number 

of wrongly guessed passwords from certain IP addresses. So even when the attacker has 

distributed the service requests the HIDS is able to detect them. From the network 

traffic the same can be detected by monitoring the service request amounts to a single 

destination. [75]  

With mail services it is difficult to set up a specific threshold which would 

distinguish a legitimate amount of messages from abnormal amount. This requires 

monitoring of message amounts in order to find out what is a normal message amount. 

The features that should be monitored for attacks against the services are: 

 Number of service request 

 Number of packets to a single service 

 Number of flows to a single service 

 

User to Root 

U2R attacks are detectable with misuse based IDS from the network traffic packets. 

Attacks belonging to this category have a distinguishable pattern or a string in the 

payload that can be looked for. [32] An anomaly detection based IDS that does not 

monitor packet payload therefore cannot detect attacks belonging to this category. Of 

course some attacks might be detectable but as most of them are affecting only to the 

payload, detection of these attacks with anomaly detection based IDS is therefore not 

expected.  
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Remote to User 

Similarly to U2R attacks, the R2U attacks are detectable only from the payload data by 

looking for specific patterns. Some of the attacks are though also detectable from the 

network traffic by looking for malformed packets that are oversized, fragmented or 

using, for example, abnormal TCP flag options.  [32] 

 

Data 

This group contains an attack known as “secret” in which the attacker tries to transfer 

data from a legal place to a place where it does not belong. In order to detect these 

actions the system needs to know which files are secret. This requires a host-based IDS 

which would monitor actions regarding the use of these files. [32] 

4.1.2 Prior Art 

Maselli et al. [78] have defined global features that can be used to profitably detect 

network anomalies, regardless of the network infrastructure or users. They have 

explored different approaches to the problem of choosing the most relevant features to 

monitor. Their investigation combined static and dynamic traffic knowledge. Static 

traffic knowledge contained analysis of network security violations, IP protocol 

dissection, and network traffic monitoring metrics. In addition they surveyed what 

features network system administrators monitor. Dynamic traffic knowledge contained 

analysis of how the system administrators define counters and corresponding thresholds 

for each protocol in order to model normal network traffic and to distinguish anomalous 

traffic from it. A summary of their conclusions is presented with the following lists:  

 

Monitor traffic volumes according to TCP/IP protocols: 

 Number of source packets per protocol. 

 Number of destination packets per protocol. 

 Number of source bytes per protocol. 

 Number of destination byte per protocol. 

 

Monitor TCP session history that contains knowledge of: 

 source IP address 

 source port number 

 destination IP address 

 destination port number 

 duration of the connection 

 TCP window size 

 TTL statistics  

 amount of re-transmitted data 

 fragmented packets percentage. 
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Monitor traffic distribution: 

 Amount of local traffic vs. amount of remote traffic. 

 Amount of traffic per each connection/flow per application. 

 Amount of used bandwidth. 

 

Monitor packet distribution: 

 Number of packets by packet size. 

 Amount of IP vs. non-IP traffic. 

 Unicast vs. multicast vs. broadcast. 

 

Although the features described by Maselli et al. [78] are on a high level, they still give 

ground to the conclusions that are made based on the attack analysis and comparison of 

used features in prior art.  

4.2 Feature Subsets 

Based on the available information from different sources like Knuuti’s thesis [55] and 

Gorton’s research of alert correlation [54], research on detecting intrusions in network 

traffic share common features that are called IP packet quintuple flow identifiers; 

destination address, source address, destination port, source port and protocol identifier.  

Also based on the different sources like [55] and [54] it seems that an efficient IDS 

can be done just by using the IP packet quintuple as a basis. With the IP packet 

quintuple it is possible to detect most of the known anomalies or at least group them 

into seven commonly known groups like Lakhina et al. did in [52]. 

It is possible to make IDS even more precise in detecting intrusions when the basis 

of features is broadened with environment or monitoring specific features. For example, 

a combination of statistics from the network elements (their status, CPU consumption) 

together with user statistics (their amount, activity, etc.) and network traffic flows could 

improve accuracy by less false positives and negatives. 

After analysing the features from the attack scenarios of view it seemed that the 

features used by Knuuti [55] are very similar to the features that should be monitored 

for each attack category. Therefore the features used by Knuuti (see Section 3.3.1) were 

chosen as the basis from which the subsets of features would be selected.  The features 

to be monitored are listed in Table 4.1. 

 

Table 4.1 Selected feature subsets 

Feature All Knuuti Probe DoS Mail server 

IP address x x x x x 

timestamp x x x x x 

number of receiving sequences x x       

number of receiving sequences from x x       



 45 

different IP’s 

number of sending sequences x x   x   

number of sending sequences to 

different IP’s 

x x       

amount of data received x x   x   

amount of data sent x x   x   

amount of packets received x x   x x 

amount of packets sent x x   x x 

number of different port numbers used 

over 1024 

x x x     

number of port numbers used over 1024 x x x     

number of different port numbers used 

below or at 1024 

x x x     

number of port numbers used below or 

at 1024 

x x x     

number of UDP flows x x x x x 

number of TCP connections x x x x x 

number of ICMP packets x x x x x 

number of SMTP connections x       x 

number of FTP connections x       x 

number of HTTP connections x       x 

number of DNS connections x       x 

number of Telnet connections x       x 

number of SSH connections x       x 

 

The features described in Table 4.1 are a statistical representation of the network traffic 

activity with a given time window. This format is also known as time series. From the 

anomaly detection point of view the time series are useful as they are lighter from the 

processing requirements point of view and they require less space in the hard drives 

when comparing them against the packet data.  
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5 EVALUATION OF THE FEATURE SUBSETS 

The feature subsets are evaluated independently in two phases by first creating a model 

of a normal network traffic using training data. In the second phase the created model of 

normal network traffic is analysed against testing data. Then all the anomalous 

indications are analysed to find out how well the feature subsets performed. 

5.1 Anomaly Detection and Feature Subset evaluation 

The process from feature selection to analysis of detected anomalies is illustrated in 

Figure 5.1. The process consists of three main themes which are the feature subset 

decision making (upper group in Figure 5.1), data processing (left group in Figure 5.1) 

and analysis of anomaly detection (right group in Figure 5.1). The criteria to choose the 

feature subsets were discussed in Chapter 4. In the following sections the data 

processing and anomaly analysis is discussed in detail. 

 

 
Figure 5.1 The feature subset evaluation process 

5.1.1 Training and testing Data 

The Lincoln laboratory 1999 dataset was chosen for the evaluation of selected feature 

subsets. The 1999 data in comparison to 1998 data contains attack free traffic which is 

crucial for creating a model of normal traffic and training the analyser with this model. 

In addition, the 1999 data contains some newer attack methods that are also targeting 
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the network services such as mail servers. Some of the attack methods used in the 1999 

data are still used today so therefore it is a better option to evaluate the selected features. 

The Lincoln dataset 1999 contains five weeks of network traffic data collected from 

the network [32]. The first three weeks in the dataset are training data and the last two 

are testing data. However, the second week of training data is not attack free and thus it 

is not used in the training phase. Using data that contains attacks could affect the model 

training in such way that the IDS recognise the attacks as normal traffic. In the testing 

phase the performance of each feature subset is evaluated against the first week (week 

four) of testing data. The second week of testing data (week five) contained issues such 

as restoring a computer from a back-up that also confused the time stamps in the testing 

data [32]. Week five was therefore excluded from the testing phase.   

Three computers running different operating systems (Solaris, NT and Linux) were 

chosen from the dataset to get a wider scope in the feature subset analysis but also to 

reduce the amount of information that needs to be analysed in the anomaly detection 

phase. In addition, the number of different attacks from the attack categories was also 

kept in mind when choosing the computers. The selected computers and attacks against 

them are listed in the Table 5.1. 

 

Table 5.1 Selected computers from Lincoln laboratory dataset and the number of 

attacks in each attack group. The numbers of attacks longer than 60 

second in duration are presented within the brackets. 

Name IP address 
Operation 

system 
Total No. 
of attacks  

No. of 
probe 

attacks 

No. of 
DoS 

attacks 

No. of attacks 
against the 
mail server 

Pascal 172.16.112.50 Solaris 49 (14) 1 (0)  17 (1)  1 (1)  

Hume 172.16.112.100 NT 39 (15) 9 (1)  4 (3)  0 (0) 

Marx 172.16.114.50 Linux 23 (12) 3 (0) 6 (5) 4 (2) 

 

5.1.2 Anomaly Detection Tool 

Evaluating the efficiency of the features is done using an anomaly detection test bench 

for mobile network management (ADAI) by Kumpulainen and Hätönen [79]. The tool 

takes time series data as an input together with a configuration file that defines the 

format and variable names used in the time series. The time series are separated into two 

files; into day overviews and detailed files. The day files are a summary of the total 

number of occurrences in each day. The detailed files are time series information that 

represents the flow information within a specified time window.  

Once the data is read, it is possible to choose a specific timeframe of interest from 

the preview window shown on the right in Figure 5.2. For example, it can be used to 

separate the training period from the testing period. More detailed description of the tool 

and its features are given in [79]. 
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The anomaly detection is done in two phases. First the testing data needs to be 

chosen in order to create the model of the normal network traffic. This model is then 

used as a point of comparison in the second phase when the testing data is analysed.   

 

 
Figure 5.2 ADAI GUI 

ADAI supports different anomaly detection algorithms from which a local anomaly 

detection method was chosen for the feature evaluation. [79] 

5.1.3 Anomaly Detection Method 

Local anomaly detection method is an improvement of a global AD method [50]. The 

method combines K-means clustering with Kohonen’s [80] self-organising maps (SOM) 

to detect anomalies.  

K-means clustering is an algorithm that classifies data set to a certain K number of 

clusters. Each cluster has a centroid and the data is classified by the distance from a 

centroid. Each data point is classified to the cluster with the closest centroid [81]. Self-

organising map is a neural network tool for mapping high-dimensional data into one- or 

two- dimensional map that can be visualised [80]. 

Kumpulainen and Hätönen [82] improved the anomaly detection method by using 

local thresholds instead of global thresholds. As a result of this improvement the 

amount of false positives were reduced. The idea and comparison of global and local 

thresholds is illustrated in Figure 5.3. 
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Figure 5.3 Anomaly detection using global and local thresholds [83]. 

In general the local anomaly detection method creates a map of the data, groups the 

neurons and calculates the local variances within the neuron groups. All the data points 

that are far from the neuron groups are marked as anomalies. In Figure 5.3 these data 

points are marked by stars. [83] 

ADAI with the local anomaly detection method calculates anomalous events from 

the time series and gives a list of them as an output. The tool supports exporting of 

anomalies into a file for further evaluation. In addition, the tool can plot time series 

figure together with the detected anomalies. The tool can also plot figures that show the 

distribution of anomalies according to the day of the week, time of the day; how the 

anomalies are grouped and how scattered the data is within the groups. These figures 

give additional information when analysing the anomalies. [79] However, only the 

anomaly exporting functionality is used in this thesis to analyse the features.  

The output is a list of all the events that are detected as anomalous. All the events 

contain the timestamp, level of anomaly which gives estimation on the seriousness of 

the detected anomaly and in addition the events contain top three features that are 

contributing most to the anomaly. [79] These anomaly lists are analysed against the 

information on the attacks (starting time and duration) given by Lincoln laboratory [32].  

The used version of the tool (0.81) uses a size of SOM that is hard coded in to the 

program. This has some disadvantages when creating a model of the normal network 

traffic of two weeks. Originally the tool was designed to be used with a specific amount 

of data which was far less than the amount of training data. As a result the processing 

requirements became too high to handle when using a time window size of 5 seconds. 

Therefore a 60 second time window size was used instead to overcome this limitation. 

5.2 Preparing the Data 

As the anomaly detection tool requires time series data as an input the packet data needs 

to be converted. First the packet data is converted into flow-based traffic data from 

which the time series can be extracted. The data conversion process is described in the 

following sections. 
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5.2.1 Pre-processing the Data 

Each week in the Lincoln dataset is divided into five day files which are from Monday 

to Friday. Each day is a tcpdump capture and therefore they are in tcpdump format. 

These capture files contain non-IP-based traffic such as link layer messages and others 

that do not have an IP address. In the evaluation of feature subsets the focus is on IP-

based traffic and therefore all non-IP based traffic needs to be filtered out before further 

processing the data. The filtering is done by using tcpdump’s own filtering options. In 

general the capture files are read using tcpdump with the following command: 

 

tcpdump -r  file.tcpdump  ip -w ip_only.tcpdump 

5.2.2 Packet Data into Flow Data 

After the filtering the capture files contain only IP-based traffic and it can be further 

processed into flow data. This is done using Argus-server. Argus takes the capture files 

as an input and converts the packet data into bi-directional flow data. This is done using 

the following command: 

 

argus  -r ip_only.tcpdump -w flow.argus 

 

The output file of the Argus-server is in argus-format that contains all the flow 

information collected from the packet data. In order to process the argus-based data it 

needs to be read using Argus-client, Ra (read Argus), that comes with the Argus 

installation. The Ra-function works in similar way as did the Argus-server. It takes as an 

input the argus-based data and either prints the output on the screen or into a specified 

file.  

The features required in the anomaly detection affects the flow features that need to 

be read from the flow data. The general idea is to choose flow features that contain 

valuable information on the network traffic behaviour. These flow features are used to 

create a model of the normal network traffic and therefore they should represent the 

network traffic as well as possible. In this case the output is saved into a comma 

separated value (CSV) file using the following command: 

 

ra -u -nr flow.argus -c ";" -s stime proto saddr sport spkts sbytes daddr dport dpkts dbytes > ./file.csv; 

 

The output of the Ra in this case is in csv-format that contains the following features: 

 

 starting time of the flow in unix time format 

 protocol (TCP, UDP or ICMP) 

 source IP-address 

 source port number 

 number of packets sent by the source 
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 amount of bytes sent by the source 

 destination IP-address 

 destination port number 

 number of packets received by the destination 

 

All of the above mentioned operations need to be done for every capture file. In the end 

there are five csv-formatted day files for each week that contain the flow information. 

To make things easier the csv-files can be concatenated using the following command: 

 

cat day1.csv day2.csv day3.csv day4.csv day5.csv > week.csv 

 

The whole process is automated with a shell-script presented in Appendix 4. 

5.2.3 Feature extraction 

In order to extract the features defined in Section 4.2 the csv-formatted flow data need 

to be parsed. The parser presented in Appendix 5, checks the flow data using a pre-

defined time window and creates time series. An event in the time series represents the 

flow information within the time set by the time window.  

The parser is a modified version of Knuuti’s parser [55, pp. 63-65]. Knuuti’s parser 

has been an excellent basis for the flow data parser. When Knuuti’s parser was created 

to choose a specific IP-address range, the parser in Appendix 5 is taking into account all 

the IPs in the flow data. In addition to the features collected by Knuuti the parser used in 

this thesis collects information on the used services (SMTP, FTP, SSH, Telnet, DNS 

and HTTP) as well. 

As a result the parser creates time series of the 23 features described in Section 4.2. 

These features are used as a basis in the analysis. The subsets of features are selected 

from this list according to the categories discussed in Section 4.2 that are used in the 

training and testing phases of the anomaly detection. 



 52 

6 RESULTS 

The feature subsets are evaluated against each other and thus the evaluation is not done 

against the prior art. One reason for this is because the prior art uses the dataset from 

1998 and in this thesis the data from 1999 is used instead. Therefore the results are not 

comparable with other studies such as KDD CUP 99 discussed in Section 3.3.1.  

Expectation was that by using the feature subsets it is possible to detect attacks from 

the specific attack categories within the data. In addition, the performance is expected to 

be better with the feature subsets in comparison to the use of all the features. It was also 

expected that the chosen time window size (60 seconds) will affect negatively to the 

detection of attacks whose duration is less than the window size. For example, the 

duration of most of the probing attacks is one to three seconds. It is therefore expected 

that most of these short period attacks might not be detectable. The results in the 

following sections are illustrated based on the data in Appendix 6.  

6.1 Detected Attacks 

Results of the IDS’ performance are discussed in the following sections. Taking into 

account the expectations the results are divided in the following manner. In Sections 

6.1.1 and 6.1.2 are the detection rate results of attacks from all of the five attack 

categories in the testing data. In Sections 6.1.3 and 6.1.4 are the detection rate results of 

all attacks from the selected attack categories. The selected attack categories are probing 

attacks, denial of service attacks and attacks against the mail server. 

In Sections 6.1.5, 6.1.6 and 6.1.7 are the detection rate results of attacks from each 

selected attack categories using each feature subset. 

6.1.1 Detection Rates of Attacks 

Results on the detection rate of all the attacks against each computer with the feature 

subsets are presented in Figure 6.1. The overall detection rates are between 10 and 30 

percent. These results are more or less what were anticipated as most of the attacks are 

short in duration and the attacks from U2R, R2L and Data categories are greater in 

number when comparing them against probing and DoS attack amounts. The number of 

attacks for Solaris is (49), for NT (39) and for Linux (23) (see Table 5.1 in Section 

5.1.1). 
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Figure 6.1 Detection rates of all attacks 

 

Some of the interesting findings from the results in Figure 6.1 are that when comparing 

operating systems and the detection rates with the feature subsets it is noticeable how 

the attacks and their effect to the network traffic is significantly different. For example, 

attacks against the Solaris computer are best detected using the probe feature subset but 

NT probe subset’s performance is the worst. It seems that the detection rates with the 

NT and Linux are opposite of what was achieved with the Solaris. The attacks against 

NT and Linux are best detected using the Knuuti feature subset.  

6.1.2 Detection Rates of Attacks longer than 60 Seconds in Duration 

The detection rates of all attacks which were 60 seconds or longer in duration are 

illustrated in Figure 6.2. The overall detection rate is far better when comparing them 

with the detection rates of all the attacks in Figure 6.1. The number of attacks for Solaris 

is (14), for NT (15) and for Linux (12) (see Table 5.1 in Section 5.1.1).  

On average the results are between 30 to 50 percent. It was expected that when 

taking into account only the attacks which duration is longer than 60 seconds, the 

detection rate would also be better. Most of the attacks that are longer than 60 seconds 

are from the DoS attack category but there are also attacks from all of the other 

categories as well. 
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Figure 6.2 Detection rates of attacks longer than 60 seconds in duration 

 

From the Figure 6.2 it can be seen that the best performed feature subsets are the same 

as was in Figure 6.1. However the difference between the feature subsets for NT and 

Linux is not huge when detecting attacks that are longer than 60 seconds in duration. 

When looking the result for the NT computer it seems that all and Knuuti feature 

subsets are equally good in detecting attacks with a detection rate of 53%. The same is 

valid with the attacks against the Linux computer. The all and Knuuti feature subsets 

achieved both a detection rate of 42% 

6.1.3 Detection Rates of Selected Attacks 

When taken into account the fact that attacks from the U2R, R2L and Data categories 

are not detectable using the defined features the results are somewhat different in 

comparison to the results presented in Figures 6.1 and 6.2. The detection rates of attacks 

from the DoS and Probe categories are summarised in Figure 6.3. The detection rates of 

attacks from the selected categories longer than 60 seconds in duration are summarised 

in Figure 6.4. The number of attacks for Solaris is (18), for NT (13) and for Linux (9) 

(see Table 5.1 in Section 5.1.1). 

 

 
Figure 6.3 Detection rates of selected attacks 

 



 55 

From the Figure 6.3 it can be seen that the detection rate of attacks against the Solaris 

computer is better with every feature subset except with the probe features. It seems that 

most of the attacks detected with the probe subset are from the three unlikely detectable 

attack categories. The same can be said with the NT computer as the detection rate is 

lower when only the selected attack categories are taken into account.  

However the detection rates of attacks against the Linux computer are 

approximately 10% higher than when taking into account all the five attack categories. 

The biggest improvement was achieved with the Knuuti feature subset whose detection 

rate rose almost 25% from the results in Figure 6.1. 

6.1.4 Detection Rates of Selected Attacks longer than 60 Seconds in 

Duration 

Results shown in Figure 6.4 are containing only attacks from the selected attack 

categories and in addition the ones that are longer than 60 seconds in duration. These 

results should be according to the expectations. At first glance the results are better than 

shown in Figure 6.1. However, the number of selected attacks for each computer is far 

less than when taking into account all the attacks.  The number of attacks for Solaris is 

(1), for NT (4) and for Linux (5) (see Table 5.1 in Section 5.1.1). 

When looking the results, it seems that the smaller feature subsets are able to detect 

the only one selected attack for Solaris computer. It might be that, the effect of this 

attack gets mixed up in the mass of other features and is not therefore detectable when 

using multiple features.  

Half of the attacks against the NT computer were detectable with each feature subset 

except with the probe features. This result is interesting as one of the four attacks is 

from the probe attack category. Therefore, this feature subset did not perform well.  

When looking the results for the Linux computer, it seems that the DoS features are 

not performing well. The all, Knuuti and mail server features on the other hand are 

detecting 60% of the selected attacks. The most interesting results are achieved with the 

probe features. This result is interesting as there were no probe attacks among the 

selected attacks and therefore the ones that were detected, were from other categories. 

 

Figure 6.4 Detection rates of selected attacks longer than 60 seconds in duration 



 56 

6.1.5 Probe Attacks 

The results of detecting attacks from the Probe category are illustrated in Figure 6.5. 

The detection rate of probe attacks against the Solaris computer are 100% with the 

probe, DoS and mail server feature subsets. In total there was only a single probe attack 

against the Solaris computer. However the probing lasted only one second which still 

was detected against the expectation with the three mentioned feature subsets. 

The probing attacks against the NT computer were almost completely passing the 

detection. The attacks were not detected with the probe feature subset which was again 

against the expectations. The other subsets were able to detect one of the probing 

attacks which was the only one that lasted longer than 60 seconds. 

With the Linux computer the results were against the expectations as the Knuuti 

feature subset outperformed the probe subset. This shows again the difference between 

operating systems and the attacks against them and how they affect to the features.  

 

 
Figure 6.5 Detection rates of Probe attacks 

6.1.6 DoS Attacks 

The results of detecting attacks from the DoS category are illustrated in Figure 6.6. DoS 

attacks against the Solaris computer are best detected using the DoS feature subset 

which was an expected result. However, the detection rate with the probe and mail 

server subsets is equally good. 

The detection rate of DoS attacks against the NT computer is equal between the 

feature subsets. It is interesting that for some reason the DoS feature subset is not better 

than the other subsets. One reason for this result is that the DoS attacks against the NT 

that were detected cause significant changes to most of the network traffic features 

which then are also detectable with the other feature subsets. 

The detection rate of DoS attacks against the Linux computer is completely against 

the expected results. The DoS feature subset performs the worst in comparison to the 

other subsets. It seems that the DoS attacks against Linux computers are causing 

changes into totally different features than the attacks against the NT and Solaris. 
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Figure 6.6 Detection rates of DoS attacks 

6.1.7 Attacks against the mail server 

The results of detecting attacks against the mail server are illustrated in Figure 6.7. It 

should be noted that there were no attacks against the NT and therefore it is not shown 

in the Figure 6.7. 

The overall results are more or less according to the expectations as the smaller 

feature subsets were able to detect the attacks better than when using all of the features 

or the Knuuti features. When taking into account that when using fewer features the 

processing requirements are also smaller than when using a larger set of information. 

From this perspective the results were very good. The interesting thing though in these 

results is that the probe and Dos feature subsets were as good as the mail server features 

with the attacks against the Solaris computer. With the Linux computer all of the 

subsets except the DoS subset performed equally well. 

 

 

Figure 6.7 Detection rates of attacks against the mail server 
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6.2 True Positives and False Positives 

The rate of detected anomalies that corresponds to an actual attack (true positives) is 

illustrated in Figure 6.8. It should be taken into account that even normal network traffic 

contains changes that can be detected as an anomalous behaviour. 

From Figure 6.8 it can be seen that the network traffic to the Linux computer the 

local anomaly detection method detected more true positives than false positives with 

the probe and mail server feature subsets. The probe feature subset detected from the 

network traffic to the NT computer more false positives than true positives. With the 

Linux computer the DoS feature subset has similar results. 

 

 
Figure 6.8 Rates of true positives with feature subsets 

 

In Figure 6.9, 6.10 and 6.11 is shown the number of false positives in comparison to the 

number of true positives detected from the network traffics, to each computer with the 

feature subsets. With the NT and Linux computers the results are according to the 

expectations that when using more features it will also cause more false positives.  

The Solaris however, gave the opposite results. With smaller feature subsets, the 

number of false positives is far greater, than when using the all features or Knuuti 

features.  

As a conclusion it is clear that more investigation of differences between operating 

systems and attacks against them need to be done in order to find out more suitable set 

of features. Although there were huge differences in the results, they were still more or 

less according to the expectations. The results can be thought of as an encouragement, 

that it is possible to use smaller feature groups to detect specific attack categories with 

less processing requirements.  
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Figure 6.9 Comparison of the number of false and true positives that were detected 

from the network traffic to the Solaris computer 

 
Figure 6.10 Comparison of the number of false and true positives that were detected 

from the network traffic to the NT computer 

 

Figure 6.11 Comparison of the number of false and true positives that were detected 

from the network traffic to the Linux computer 
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7 CONCLUSIONS 

The scope of this thesis was to find suitable subsets of features for the selected attack 

categories within the Lincoln laboratory dataset. The feature subsets were formed using 

prior knowledge from other IDS researches and in addition, the attacks and their effect 

to the network traffic was analysed to decide which features should be used in the 

anomaly detection. 

The results (see Chapter 6) show that it is possible to use smaller subsets of features 

to find intrusion in the data monitored. Taking into account all the factors which affect 

to the results, the outcome was good, with 40-60% detection rate with most of the 

feature subsets (see Figure 6.4). Also the number of false positives was reduced with the 

smaller feature subsets with the Linux and NT computer. Although the results with the 

Solaris computer were completely reversed, the results can still be taken as a good sign 

that it is possible to ease the workload of the network administrator by detecting less 

false positives.  

However, as was already discussed in Chapter 6, more investigation is still needed 

to achieve better results in anomaly detection. It is clear that in some cases the results 

are completely against expectations. To find out why, more research on this area is 

required. Also testing of the proposed feature subsets should be done using a smaller 

time window. If, for example, the time window would be five seconds, it should be 

theoretically possible to detect also the shorter attacks. Probing attacks are a good 

example of such short duration attacks. 

Furthermore, the anomaly detection tool was used in default settings and with only 

one anomaly detection method.  As the scope of this thesis was to evaluate the 

performance of various feature subsets, it was therefore decided, that the method is not 

relevant from the feature evaluation point of view and thus only one method was used. 

It seems though, that the method also plays a significant role in the detection 

performance. For example, the local anomaly detection method allows the user to define 

the number of clusters and the thresholds to be used in the detection phase. By testing 

different number of clusters for each attack categories, it might have been possible to 

achieve better results.  

Analysis of modern attacks is also required as the attacks are becoming more 

sophisticated, but in the same time more difficult to find out. An excellent example of 

this is the Stuxnet virus discussed in Section 2.1.2. Another criterion in finding modern 

attacks is to use network traffic from the live networks. Especially when the IDS is 

supposed to work in telecommunications networks the data should be also collected 

from such network. 
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APPENDIX 1  NETWORK TRAFFIC HEADER FIELDS 

No.  Feature  Description 

1 Protocol  Type of Protocol 

2 Frame_lenght  Length of Frame 

3 Capture_lenght  Length of Capture 

4 Frame_IS_marked  Frame IS Marked 

5 Coloring_rule_name  Coloring Rule name 

6 Ethernet_type  Type of Ethernet Protocol 

7 Ver_IP  IP Version 

8 Header_lenght_IP  IP Header length 

9 Differentiated_S  Differentiated Service 

10 IP_Total_Lenght  IP total length 

11 Identification_IP Identification IP 

12 MF_Flag_IP More Fragment flag 

13 DF_Flag_IP  Don’t Fragment flag 

14 Fragmentation_offset_IP  Fragmentation offset IP 

15 Time_to_live_IP  Time to live IP 

16 Protocol_no  Protocol number 

17 Src_port  Source Port 

18 Dst_port  Destination port 

19 Stream_index  Stream Index number 

20 Sequence_number  Sequence number 

21 Ack_number Acknowledgment number 

22 Cwr_flag  Cwr Flag (status flag of the connection) 

23 Ecn_echo_flag  Ecn Echo flag (status flag of the connection) 

24 Urgent_flag  Urgent flag (status flag of the connection) 

25 Ack_flag  Acknowledgment flag(status flag of the connection) 

26 Psh_flag  push flag (status flag of the connection) 

27 Rst_flag  Reset flag (status flag of the connection) 

28 Syn_flag  Syn flag (status flag of the connection) 

29 Fin_flag  Finish flag (status flag of the connection) 

30 ICMP_Type 
specifies the format of the ICMP message such as: (8=echo 
request and 0=echo reply) 

31 ICMP_code  Further qualifies the ICMP message 

32 ICMP_data  ICMP data 
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APPENDIX 2  ATTACKS IN LINCOLN DATA 1999 

Category of attacks Types of attacks [32] 

Probe ipsweep, nmap, portsweep, satan 

Denial of Service (DoS) back, land, Neptune, pod, smurf, teardrop 

User to root (U2R) buffer_overflow, loadmodule, perl, rootkit 

Remote to Local (R2L) ftp_write, guess_passwd, impat, multihop, phf, spy, warezclient, warezmaster 

 

Type of attack Description [32] 

back Denial of service attack against apache webserver where a client requests a URL 

containing many backslashes. 

dict Guess passwords for a valid user using simple variants of the account name over 

a telnet connection. 

eject Buffer overflow using eject program on Solaris. Leads to a user->root transition 

if successful. 

ffb Buffer overflow using the ffbconfig UNIX system command leads to root shell 

format Buffer overflow using the fdformat UNIX system command leads to root shell 

ftp-write Remote FTP user creates .rhost file in world writable anonymous FTP directory 

and obtains local login. 

guest Try to guess password via telnet for guest account. 

imap Remote buffer overflow using imap port leads to root shell 

ipsweep Surveillance sweep performing either a port sweep or ping on multiple host addresses. 

land Denial of service where a remote host is sent a UDP packet with the same source 

and destination 

loadmodule Non-stealthy loadmodule attack which resets IFS for a normal user and creates 

a root shell 

multihop Multi-day scenario in which a user first breaks into one machine 

neptune Syn flood denial of service on one or more ports. 

nmap Network mapping using the nmap tool. Mode of exploring network will vary—options 

include SYN 

perlmagic Perl attack which sets the user id to root in a perl script and creates a root shell 

phf Exploitable CGI script which allows a client to execute arbitrary commands on a machine 

with a misconfigured web server. 

pod Denial of service ping of death 

portsweep Surveillance sweep through many ports to determine which services are supported 

on a single host. 

rootkit Multi-day scenario where a user installs one or more components of a rootkit 

satan Network probing tool which looks for well-known weaknesses. Operates at three different 

levels. Level 0 is light 

smurf Denial of service icmp echo reply flood. 

spy Multi-day scenario in which a user breaks into a machine with the purpose of finding 

important information where the user tries to avoid detection. Uses several different 

exploit methods to gain access. 

syslog Denial of service for the syslog service connects to port 514 with unresolvable source ip. 

teardrop Denial of service where mis-fragmented UDP packets cause some systems to reboot. 

warez User logs into anonymous FTP site and creates a hidden directory. 

warezclient Users downloading illegal software which was previously posted via anonymous FTP 

by the warezmaster. 

warezmaster Anonymous FTP upload of Warez (usually illegal copies of copywrited software) 

onto FTP server 
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APPENDIX 3  COMPARISON OF KDD CUP 99 STUDIES 

Method No. features Normal Probe DoS U2R R2L DR 

SVDF 6 - - - - - 88,72 

MARS 6 - - - - - 92,80 

LGP 6 - - - - - 87,71 

Rough set 6 - - - - - 89,25 

Rough-PSO 6 - - - - - 93,41 

SVM 41 99,55 99,70 99,25 99,87 99,78 99,63 

SVM (PBMR) 31 99,51 99,67 99,22 99,87 99,78 99,61 

SVM (SVDFMR) 23 99,55 99,71 99,20 99,87 99,78 99,62 

BN 41 99,57 99,43 99,69 64,00 99,11 92,36 

BN 19 99,57 96,71 99,02 56,00 97,87 89,83 

BN 17 99,64 98,57 98,16 60,00 98,93 91,06 

BN 12 98,78 99,57 98,95 48,00 98,93 88,85 

CART 41 99,64 97,85 99,47 48,00 90,58 87,11 

CART 19 95,50 96,85 94,31 84,00 97,69 93,67 

CART 17 99,64 100,00 99,97 72,00 96,62 93,65 

CART 12 100,00 97,71 85,34 64,00 95,56 88,52 

BN+CART 41 99,71 99,85 99,93 72,00 99,47 94,19 

BN+CART 17 99,64 100,00 100,00 72,00 99,29 94,19 

BN+CART 12 100,00 99,86 99,98 80,00 99,47 95,86 
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APPENDIX 4  TCPDUMP2SOM.SH 

#!/bin/bash 

 

echo "-----------------------------------------------------" 

echo "Filtering tcpdump files from all non-IP-based traffic" 

echo "-----------------------------------------------------" 

 

if [ -a ip_*.tcpdump ]; then 

 echo "-----------------------------------------------------" 

 echo "Tcpdump files already filtered" 

 echo "-----------------------------------------------------" 

else 

 for i in *.tcpdump; do 

 tcpdump -r $i ip -w ip_$i; 

 done 

fi 

 

echo "-----------------------------------------------------" 

echo "Converting tcpdump files: tcpdump > Argus data > csv" 

echo "-----------------------------------------------------" 

 

if [ -a *.csv ]; then 

 echo "-----------------------------------------------------" 

 echo "Files already converted" 

 echo "-----------------------------------------------------" 

else 

 COUNT=1; 

 for i in ip*.tcpdump; do 

 echo "Converting file $i"  

 argus -w - -r $i | ra -u -nr - -c ";" -s stime proto saddr sport spkts sbytes daddr dport dpkts dbytes > 

./$COUNT.csv; 

 echo "File ./$COUNT.csv created" 

 let COUNT=COUNT+1;  

 done 

fi 

 

echo "-----------------------------------------------------" 

echo "Creating timeseries" 

echo "-----------------------------------------------------" 

 

if [ -a week.csv ]; then 

 echo "-----------------------------------------------------" 

 echo "Timeseries already created" 

 echo "-----------------------------------------------------" 

else 

 cat 1.csv 2.csv 3.csv 4.csv 5.csv > week.csv 

 echo `./parser.py > ./SOM.csv` 

fi 

echo "DONE" 
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APPENDIX 5  PARSER.PY 

#!/usr/bin/env python 

# Parses argus data for SOM 

# Original parser (c)Olli Knuuti & Mika Tuomi, v. 5.3.2009 

# Modified by Antti Niemela, 2011 Nokia Siemens Networks 

# Modified parser (c)Nokia Siemens Networks, 2011 

# Input format CSV-file: 

# time;protocol;source-ip;source-port;sent-packets;sent-bytes;dest-ip;dest-port;received-packets;received-bytes 

# 920898003.071811;udp;192.168.1.1;520;1;66;224.0.0.9;520;0;0 

# ra function: 

# ra -u -nr - -c ";" -s stime proto saddr sport spkts sbytes daddr dport dpkts dbytes 

from pprint import pprint 

import operator 

import gzip 

import time 

from glob import glob 

def read_ra_sorted( filename ) : 

    lines = open( filename ).readlines() 

    lines.sort() 

    for line in lines : 

        line = line.strip().split(';') 

 # Checking if the flow data contains correct number of features in each line 

 # By default the number of features is 10 

        if len( line ) ==  10 : 

            #print line # For debuggin, will print all the lines used in the timeseries 

            yield line 

 

def dump_ip_list( ip_list, starttime ) : 

format = 

'%(ip)s;%(src_sessions)i;%(unique_src_ip_count)i;%(dst_sessions)i;%(unique_dst_ip_count)i;%(port_below_1k)i;%(

unique_port_below_1k_count)i;%(port_above_1k)i;%(unique_port_above_1k_count)i;%(sent_packets)i;%(received_

packets)i;%(sent_bytes)i;%(received_bytes)i;%(tcp)i;%(udp)i;%(icmp)i;%(smtp)i;%(ftp)i;%(http)i;%(dns)i;%(telnet)i;%

(ssh)i;%(time)s;'   

    strtime = time.strftime('%Y%m%d;%H:%M:%S', time.gmtime(starttime)) 

    for ip in ip_list : 

        ip_list[ip]['ip'] = ip 

        ip_list[ip]['time'] = strtime 

        ip_list[ip]['unique_dst_ip_count'] = len(ip_list[ip]['unique_dst_ip']) 

        ip_list[ip]['unique_src_ip_count'] = len(ip_list[ip]['unique_src_ip']) 

        ip_list[ip]['unique_port_below_1k_count'] = len(ip_list[ip]['unique_port_below_1k']) 

        ip_list[ip]['unique_port_above_1k_count'] = len(ip_list[ip]['unique_port_above_1k']) 

        print format % ip_list[ip] 

        #pprint(ip_list[ip]) 

 

def main() : 

    # Define the timewindow for the timeseries, default value is 5 seconds. 

    timewindow = 5 

    # An Ip-filter can be set here. By default all IPs are analysed. 

    ipfilter = '' 

    # Open flow data files that are ending with .csv in the specified folder.  

    files = glob('./*.csv') 

    #print files # Debugging, to check which files are used in timeseries creation 

    if len(files) == 0 : 

        return 

                              

    ip_list = {} 

    starttime = None 
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    for file in files : 

        for event in read_ra_sorted( file ) :       

         stime,protocol,src_ip,src_port,src_packets,src_bytes,dst_ip,dst_port,dst_packets,dst_bytes = event 

            ftime = int(float(stime) / timewindow) * timewindow 

         # Creating the "service" variable for the counters  

         service = '' 

         # Checking wether the used service protocol is (SMTP, FTP, HTTP..) 

         # Check if the service protocol is FTP = port:21 

         if int(src_port) == 21 or int(dst_port) == 21 : 

service = 'ftp' 

         # Check if the service protocol is  SSH = port:22 

         if int(src_port) == 22 or int(dst_port) == 22 : 

 service = 'ssh' 

         # Check if the service protocol is  Telnet = port:23 

         if int(src_port) == 23 or int(dst_port) == 23 : 

 service = 'telnet' 

         # Check if the service protocol is  SMTP = port:25    

         if int(src_port) == 25 or int(dst_port) == 25 : 

 service = 'smtp' 

         # Check if the service protocol is  DNS = port:53 

         if int(src_port) == 53 or int(dst_port) == 53 : 

 service = 'dns' 

         # Check if the service protocol is  HTTP = port:80 

         if int(src_port) == 80 or int(dst_port) == 80 : 

 service = 'http' 

 

          if ftime != starttime : 

              if (starttime != None) : 

                     #print '-' * 50        # debug print between time windows 

                     dump_ip_list( ip_list, starttime ) 

                     ip_list = {} 

                 starttime = ftime 

 

           for ip,port,packets,bytes in ((src_ip,src_port,src_packets,src_bytes), (dst_ip,dst_port,dst_packets,dst_bytes)) : 

 # Checking if IP-filter is used. All the IPs are analysed if the default value of ipfilter is used. 

           if ip.startswith(ipfilter) : 

           # If IP not examined before within the timeframe, create DB for it. 

                    if ip not in ip_list : 

                        ip_list[ip] = { 

                                        'unique_dst_ip' : {},  

                                        'unique_src_ip' : {},  

                                        'unique_port_below_1k' : {},  

                                        'unique_port_above_1k' : {},  

                                         'port_below_1k' : 0,  

                                          'port_above_1k' : 0,  

                                      'sent_packets' : 0,  

                                     'sent_bytes' : 0,  

                                  'received_packets' : 0,  

                                  'received_bytes' : 0,  

                                         'src_sessions' : 0,  

                                         'dst_sessions' : 0,  

                                         'tcp' : 0,  

                                         'udp' : 0,  

                                         'icmp' : 0, 

    'smtp' : 0, 

 'ftp' : 0, 

    'http' : 0, 

    'dns' : 0, 

    'telnet' : 0, 

    'ssh' : 0 

                                      } 
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   # Increase used transportation protocol counter by 1 

                    if protocol in ip_list[ip] : 

                        ip_list[ip][protocol]   += 1 

 

      # Increase used service counter by 1 

      if service in ip_list[ip] :    

   ip_list[ip][service] +=1 

 

                    # Just to convert string ports to zero 

                    try :    

                        port = int(port) 

                    except :             

                        port = 0 

                     

      # Check if the used port is equal or below 1024 

                    if int(port) <= 1024 : 

                        ip_list[ip]['port_below_1k']    += 1 

                        ip_list[ip]['unique_port_below_1k'][port] = ip_list[ip]['unique_port_below_1k'].get(port, 0) + 1 

       

                    # Check if the used port is above 1024 

                    if int(port) > 1024 : 

                        ip_list[ip]['port_above_1k']    += 1 

                        ip_list[ip]['unique_port_above_1k'][port] = ip_list[ip]['unique_port_above_1k'].get(port, 0) + 1 

 

      # If the IP under examination is the source address in the flow: 

      # Increase the counters 

                    if ip is src_ip : 

                        ip_list[ip]['src_sessions']     += 1 

                        ip_list[ip]['sent_packets']     += int(src_packets) 

                        ip_list[ip]['sent_bytes']       += int(src_bytes) 

                        ip_list[ip]['received_packets'] += int(dst_packets) 

                        ip_list[ip]['received_bytes']   += int(dst_bytes) 

                        ip_list[ip]['unique_dst_ip'][dst_ip] = ip_list[ip]['unique_dst_ip'].get(dst_ip, 0) + 1 

                          

      # If the IP under examination is the destination address in the flow: 

      # Increase the counters 

                    if ip is dst_ip : 

                        ip_list[ip]['dst_sessions']     += 1 

                        ip_list[ip]['received_packets'] += int(src_packets) 

                        ip_list[ip]['received_bytes']   += int(src_bytes) 

                        ip_list[ip]['sent_packets']     += int(dst_packets) 

                        ip_list[ip]['sent_bytes']       += int(dst_bytes) 

                        ip_list[ip]['unique_src_ip'][src_ip] = ip_list[ip]['unique_src_ip'].get(src_ip, 0) + 1 

                         

    dump_ip_list( ip_list, starttime ) 

 

if __name__ == '__main__': main() 
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APPENDIX 6  FEATURE SUBSET TABLES 

Detection rate of all attacks 

Solaris, 172.16.112.50 

Metric All Knuuti Probe DoS Mail server 

DR Attacks All 8 8 39 10 22 

DR Attacks >60s 7 7 67 14 43 

DR DoS All 12 12 18 18 18 

DR DoS >60s 0 0 100 100 100 

DR Probe All 0 0 100 100 100 

DR Probe >60s 0 0 0 0 0 

DR Mail server All 0 0 100 100 100 

DR Mail server >60s 0 0 100 100 100 

      NT, 172.16.112.100 

Metric All Knuuti Probe DoS Mail server 

DR Attacks All 21 26 3 21 26 

DR Attacks >60s 53 53 7 33 47 

DR DoS All 25 25 0 25 25 

DR DoS >60s 33 33 0 33 33 

DR Probe All 11 0 0 11 11 

DR Probe >60s 100 0 0 100 100 

DR Mail server All 0 0 0 0 0 

DR Mail server >60s 0 0 0 0 0 

      Linux, 172.16.114.50 

Metric All Knuuti Probe DoS Mail server 

DR Attacks All 30 43 17 13 26 

DR Attacks >60s 42 42 17 8 25 

DR DoS All 50 50 33 17 50 

DR DoS >60s 60 60 40 25 60 

DR Probe All 33 100 67 33 67 

DR Probe >60s 0 0 0 0 0 

DR Mail server All 50 50 50 0 50 

DR Mail server >60s 100 100 100 0 100 
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Detection rate of selected attacks 

Solaris, 172.16.112.50 

Metric All Knuuti Probe DoS Mail server 

DR Attacks All 11 11 22 22 28 

DR Attacks >60s 0 0 100 100 100 

      NT, 172.16.112.100 

Metric All Knuuti Probe DoS Mail server 

DR Attacks All 15 15 0 15 15 

DR Attacks >60s 50 50 0 50 50 

      
Linux, 172.16.114.50 

Metric All Knuuti Probe DoS Mail server 

DR Attacks All 44 67 44 22 56 

DR Attacks >60s 60 60 40 20 60 

 

Number of false and true positives 

Solaris All Knuuti Probe DoS Mail server 

False Positives 14 15 47 39 55 

True Positives 4 4 17 8 16 

      
NT All Knuuti Probe DoS Mail server 

False Positives 42 69 12 49 52 

True Positives 23 26 1 23 22 

      Linux All Knuuti Probe DoS Mail server 

False Positives 51 51 19 42 22 

True Positives 24 24 17 3 21 

 


