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In IP networks, an anomaly detection system identifies attacks, device fail-
ures or other unknown processes that deviate from the normal behavior
of the network known as anomalies. The thesis studied anomaly detection
in traffic datasets from IP networks. The datasets contained high number
of normal events and few anomalies. This resembles a normally operating
network.
We construct graphs from traffic data and study their properties. We for-
mulated anomaly detection as a graph based clustering problem. A novel
graph bi-partitioning algorithm called NodeClustering was designed to
separate normal samples from anomalous ones.
Performance of NodeClustering was investigated with extensive network
traffic data. The performance was compared with state of the art graph
based spectral clustering algorithms. NodeClustering identified all the
known intrusions in the data and outperformed the compared graph based
methods with an average improvement of 50% on the true positive rate
with lowest false positive rate on the studied datasets. In addition, its
applicability to one non-traffic dataset was shown.
NodeClustering can be used in IP networks to detect anomalies. In the
future, threshold used for graph partitioning can be studied further and
computationally efficient methods to construct larger graphs might be
studied.
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Chapter 1

Introduction

1.1 Scope of the thesis

Different components and services in a network generate traffic data which
exhibit different patterns. Most of these patterns represent normal behavior.
However, there are few cases that deviate from the normal pattern. The
cause for the deviations might be due to malfunctioning device (for example
a router or switch), attacks (intrusions) to the network or other unknown
activities with abnormal patterns. We call such patterns anomalous patterns
or anomalies.

The main focus of the thesis is finding anomalous samples in data sets col-
lected from a normally operating Internet Protocol (IP) network environ-
ment. In a normal network environment, majority of the traffic samples are
free of anomalies and few contain anomalies. One reason is users in the net-
work usually perform normal activities, for instance web browsing, that do
not generate malicious traffic. Moreover, there are different mechanisms that
assure the normality of the network. Examples include anti-viruses and fire-
walls. The specific amounts of normal and anomalous samples in the traffic
data from such environments vary depending on the environment itself where
the log data is collected.

Network security analysts and system administrators usually need to find
anomalies in a log data collected from some monitored network. In this the-
sis, we provide a novel algorithm for anomaly detection in a log data collected
from IP network traffic.

1



CHAPTER 1. INTRODUCTION 2

1.2 Contribution

In machine learning, graph based data analysis has been studied very well.
In this thesis, we represent log data from IP network data as a graph and
formulate anomaly detection as a graph based clustering problem.

In this thesis, a new graph based clustering algorithm called NodeClustering

is introduced. This algorithm is capable of bi-partitioning non-similar nodes
of the graph into non-intersecting sets using a heuristic threshold. It is com-
putationally inexpensive compared to currently existing graph based spectral
clustering algorithms and outperforms them in the detection results as well.

To our best knowledge, this is the first method that does clustering on the
nodes of the graph without utilizing the eigenvectors of the graph Laplacian
for anomaly detection purposes. We test the performance of our algorithm
with two traffic datasets.

1.3 Structure of the thesis

In the previous sections, we presented the thesis problem and our original
contribution to the problem. The rest of the thesis follows the following
structure.

The thesis proceeds in Chapter 2 with a general introduction of intrusion
and anomaly detection systems.

Chapter 3 discusses the use of graphs in data analysis and different proper-
ties of graphs useful for the analysis.

Chapter 4 introduces graph based clustering methods and propose a new
algorithm called NodeClustering.

In Chapter 5, we do anomaly detection with graphs on real traffic datasets
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and make comparisons with other graph based spectral algorithm methods.

Finally, Chapter 6 concludes the thesis with the key outcomes of the experi-
mental findings and makes recommendations for future work.



Chapter 2

Intrusion and Anomaly
Detection Systems in IP
Networks

In this chapter, an overview of different intrusion detection systems with
emphasis on anomaly detection systems will be given.

2.1 Intrusion Detection Systems

In network security, an intrusion is defined as unauthorized action on a sin-
gle host or a network to access data, use or modify the data and make the
network unreliable and unsecured [1].

Intrusion Detection System (IDS) defines a set of hardware or software sys-
tems that automate the process of monitoring different activities in a single
host or in networks to detect intrusions or indication of intrusions from col-
lected log data or a live network traffic [2]. Deploying an IDS in an organiza-
tion network or in a single host helps increasing the reliability and security
of the network by detecting potential breaches of security [3].

We follow the process model of intrusion detection system [3], which describes
IDSes with three elements. The elements are: different information sources
generating traffic data, analysis methods for the data and response after the
analysis [3]. We briefly describe each of the elements below.

4



CHAPTER 2. IDS 5

2.1.1 Information sources

Information sources define different origins of incident information in the
telecommunication network. These sources provide the data which can be
used to detect whether intrusions have occurred [3]. The sources can send
either packets from their networks and other elements or generate data from
their internal operating systems or applications running on them.

They can further be divided into three types: network-based, host-based and
application-based IDSes.

Network-Based IDS

A network-based IDS acquires and examines network traffic packets for signs
of intrusions. A network-based IDS comprises a set of dedicated sensors or
hosts which scan network traffic data to detect attacks or intrusive behaviors
and protects the hosts connected to the network [3].

The major advantages of a network-based IDS include its ability to scan
large networks, transparency to the normal operation of the network, ability
to scan the traffic passively without being visible and that it can be made
invisible to attackers and thus made more secure [3].

The major disadvantages of a network-based IDS are inability to handle
encrypted data, incapacity to report whether an attack was successful or
not but report only the initiation of an attack, and incapability to handle
fragmented packets which make the IDS unstable [3].

Host-Based IDS

A host-based IDS operates on data collected from a single computer system
(host). These data can be from the innermost part of the host’s operating
system (audit data) [1] or system log data. Host-based IDS uses these data
to detect traces of an attack [3].

The advantages of host-based IDSes include the ability to detect incidents
local to the host which might not be detected by the network-based IDS and
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capacity to find attacks which target the host’s operating system [3].

Host-based IDSes have some problems. They are usually deployed in the host
system and can be disabled as part of the attack. Moreover, they use the
host’s computational infrastructure which makes its performance degrade.
This type of IDS is deployed in individual hosts that make the configuration
difficult as the different hosts have different behaviors and usage [3].

Application-Based IDS

Application-based IDS finds attacks originating from software applications
running on a host. This IDS runs on a host and can be considered an element
of the host-based IDS [3].

Application-based IDSes are advantageous since they keep track of the inter-
communication between the application and the user. One major challenge
of this IDS is that software application data can easily be modified and used
as part of the attack [3].

2.1.2 Techniques of Analysis

In subsection 2.1.1, we have introduced different sources of network traffic
data and where the IDSes can be placed. There are two major techniques
IDSes use in analyzing the network traffic data: misuse and anomaly detec-
tors.

Misuse Detection

Misuse detection systems encode a known attack in some pattern or signa-
ture. These detectors find patterns similar to the signature and flag them as
attacks [4]. The signatures usually include patterns for different variants of
the known attack, and non-attack behavior.

The main challenges of a misuse detection system are its inability to write
signature models for all the known intrusive patterns and identifying which
alike pattern is not intrusive. A misuse detection system fails when there
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are attacks with new observed patterns that do not have previous recorded
signatures [4].

Anomaly Detection

The term anomaly defines an activity whose behavior deviates from the nor-
mal pattern or profile. Anomaly detection systems define a model that detect
anomalies. These systems define attacks as subset of anomalies [4].

Anomaly detection systems model normal activity patterns and report pro-
files that deviate from the normal pattern as anomalies.
Thus, anomalous behavior that is not intrusive can be reported as intrusive
or anomalous sample can be reported as normal. The former case results in
false-positive rates, which is a challenge in anomaly detection systems [4].

In anomaly detection systems, categorizing an anomaly that is intrusive in
nature as a non-intrusive is a worse behavior than detecting an anomaly that
is non-intrusive as intrusive.

2.1.3 Response

There are different measures the IDS take to combat the detected attacks or
other anomalies. These responses can be either active, passive or a combi-
nation of both [3].

Active Response

Active response describes a set of automated actions taken when an attack
is detected. The responses can be immediate obstructing of any access from
the attacker when there is sign of the attack.

An attacker can be denied access by offensive measures (attacking back the
intruder), collecting additional data to help examine the nature of the attack,
or diagnose the attack and eventually catch the attacker [3].
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Passive Response

Passive responses define a set of measures that a human agent, for example a
system administrator or a security analyst, takes care of after receiving a re-
port from the detection system. Some IDSes display the report as an alarm,
which is visible through a pop-up window or some other visualization meth-
ods. The alarm can be a notification of an incident has occurred or exhibiting
a more detailed description of the incident. Other IDSes send the report to a
central management console through Simple Network Management Protocol
(SNMP) traps and messages [3].

2.2 Anomaly Detection Systems

Anomaly detection systems are one technique used in intrusion detection sys-
tems. These systems construct a model which depicts normal behavior of a
communication network. We discuss what the detection models use as input
and how the models achieve detection focusing on three detection modeling
approaches.

Some of the models in anomaly detection systems use raw data features as in-
put while other models use preprocessed features. Features can be packet in-
formation (for example, packet count, duration of the packet, number of sent
and received packets), used communication protocols (for instance, Transmis-
sion Control Protocol, User Datagram Protocol), generic behavior of normal
users and other information.

The detection models use different approaches. In the following subsections,
we discuss three modeling techniques used in anomaly detection systems [5].

2.2.1 Statistical-based models

Statistical-based anomaly detection models create a representation of the
network normal behavior using different features of the network traffic data.
When new pattern is observed, scores of anomaly are reported after the com-
parison with the normal model [5].

The normal models can be univariate which model only one feature, or mul-
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tivariate which use many features of the traffic data [5].

There are some problems with statistical-based anomaly detection models.
One problem is that the normal model can be trained mistakenly with an
attack traffic instead of normal traffic. Selecting which features the models
should use is another challenge [5].

2.2.2 Knowledge-based models

Knowledge-based anomaly detection techniques build a model using an ac-
quired prior knowledge from an expert. The knowledge can be represented in
form of rules and descriptions. Some well known knowledge based techniques
include Finite State Machines (FSM), description languages like N-grammars
and Unified Modeling Language (UML), and expert-systems [5].

The main advantage of this type of models is their flexibility to handle dif-
ferent anomalies in the specified knowledge. The problem with knowledge-
based techniques is the lack of first-rate knowledge when making the rules
and specifications [5].

2.2.3 Machine learning-based models

Machine learning-based techniques provide models adaptable with the data.
When a new pattern is learned from data, the models adapt to incorporate
this pattern [5]. This makes this method robust to detect anomalies than
the previous models.

Examples of machine-learning based models include neural networks, Markov
models, fuzzy logics, genetic algorithms, and clustering methods [5]. Al-
though these models provide accurate identification results, building the
models might be computationally expensive [5].



Chapter 3

Graphs in Data Analysis

In this Chapter, we discuss the application of graphs for data analysis, how
to build graphs from data, and study different properties of graph.

3.1 Definition of a graph

A graph is a mathematical representation of a form G = (V,E), where
V = {v1, v2, · · · , vn} represents the set of vertices (nodes) and E = {ei,j}
denotes a set containing individual edge values (strengths) ei,j connecting
the vertices vi, vj ∈ V [6].

The number of vertices of the graph is |V | = n, where n is the size of the
set V. The nodes of a graph vi and vj are called neighbors if there is an
edge ei,j between both nodes. This neighborhood relation can be written as
vi ∼ vj [8]. A graph can be weighted or unweighted depending on the edge
values ei,j between the nodes vi and vj.

A graph G is said to be weighted if the edge value ei,j ≥ 0, that is the edges
have non-negative values [6]. G is called unweighted if ei,j = 1 when vi ∼ vj
and 0 otherwise [8].

G is called directed iff ei,j 6= ej,i, that is if the edge values in E are not
symmetrical. G is said to be undirected if ei,j = ej,i, in other words E is
symmetrical for any node vi and vj.

10
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3.2 Data analysis with graphs

Graphs can represent different systems and their interactions. Some examples
that can be modeled with graphs include biological networks, telecommuni-
cation networks, social interactions, a cloud computing environment, and
operating system calls.

A graph can represent some or all entities of a systems. In a biological net-
work, a graph might represent the interaction between different genes where
the nodes represent genes and the edges might represent how one gene (node)
affects the others during some metabolism reaction. In an operating system
call, a graph can represent different system calls with its nodes and the order
of the calls with the edge values. In social sciences, a graph might model
the different people in the network as nodes and their degree of friendship or
degree of interaction with its edge values.

In general, one can represent a given data with graphs. The node of the
graph will represent each observation the data, thus the number of nodes
will be equivalent to the number of observations. The edges of the graph can
represent the similarity of each of the nodes.

If matrix X,

X =


x1,1 . . x1,d
. . .
. . .
. . .

xn,1 . . . xn,d


represents the data where n defines the number of observations and d repre-
sents the number of variables (features) of the data, then the graph G = (V,E)
will represent each observation of the data with each vi ∈ V and their simi-
larity with ei,j ∈ E.

The graph G will capture the similarity of the samples if a suitable function
is used for computing the similarities. Depending on what the data X rep-
resent, G can be directed, undirected, weighted or unweighted.

If observations in the data have information indicating which nodes affect
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behavior of other nodes, the graph will be directed. The behavior can be
some cause-effect relation between the nodes. If no such information is avail-
able, the graph becomes undirected.

If there is a discrete information indicating which nodes in the graph co-
occur with other nodes, the graph will be unweighted. The information can
be given with some indicator function with ei,j 0 or 1, or a binary function
indicating neighborhood relationship of the nodes. If there is numerical value
that is not discrete for the edges where ei,j ≥ 0, the graph is weighted.

The following section presents how to construct weighted graphs and differ-
ent types of weighted graphs.

3.3 Graph construction

3.3.1 Similarity functions

Similarity functions calculate the similarities between observations in the
data. For instance, pairwise distances among samples of the data (which
are nodes of the graph) can represent the similarity among the nodes. These
functions mainly affect how many samples can be used to construct the graph
and usually use distance functions to compute the similarities. Some exam-
ples of distance functions are Euclidean distance, cosine distance, and Jaccard
distance.

The choice of distance methods is usually motivated by the task. In text
and document processing and grouping tasks, cosine distance is commonly
used. Jaccard distance is used in computing distance for binary attributes
(features). Euclidean distance is the most used method for most machine
learning tasks.

Distances are usually calculated in the original input space. There has been
research that has shown that transforming from the input space to a higher
dimensional space captures more interesting properties of the data. Kernels
are mathematical functions that can achieve this transformation.
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An input space is where the original samples are located. For the dataset X,
the input space is Rd. A kernel function K (xi,xj) transforms the similarity
values of xi and xj from the input space to (n× n) kernel matrix.

Table 3.1 [10] makes a brief list of the kernels. Radial Basis Function (RBF)
kernel, which uses the Gaussian kernel [11] with width or scaling hyper-
parameter, is the most popular one. Selecting the hyper-parameters is a
choice of modeling and can be motivated by prior expert knowledge or using
methods like cross-validation. There are also other types of kernels, for ex-
ample linear, polynomial, diffusion (heat), exponential, Cauchy, hyperbolic
tangent, etc. Some of these kernels also have hyper-parameters, which can
be chosen similar to the RBF kernel.

Types of kernels, K (xi, xj)
function Definition hyper-parameter(s)

RBF exp(−‖xi−xj‖
2

δ2
) δ > 0

Exponential exp(−‖xi−xj‖
δ

) δ > 0
Sigmoid tanh(α 〈xi, xj〉+ β) α > 0, β < 0
Logarithmic −log(1 + ‖xi − xj‖) -

Table 3.1: Types of kernels

The kernels will provide a square matrix W, where W = K(xi,xj) , also
called the adjacency matrix. Each entry wi,j ∈W captures pairwise similar-
ities between sample i and j. The adjacency matrix is a full n× n matrix.

W =


w1,1 . . w1,n

. . .

. . .

. . .
wn,1 . . . wn,n


Some properties of the adjacency matrix are:

• it is a positive symmetrical matrix, i.e. wi,j = wj,i, and wi,j ≥ 0

• diagonal entries are zero, thus self-node similarities are avoided
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We will use similarity and adjacency matrix interchangeably in this thesis
and distances between the same nodes are set to zero.

3.3.2 Similarity graphs

Similarity functions are used to build different graphs. These graphs can be
called similarity graphs and are derived from the adjacency matrix, W. Al-
though there might be other types of similarity graphs in different literature,
we will discuss only ε-neighborhood, k-neighborhood, and fully-connected
graphs [6].

ε-neighborhood graph

ε-neighborhood graph sets a threshold ε which determines the distances
ranges that are selected or left out of the adjacency matrix [6].

The threshold ε can be chosen in order of
(

log(n)
n

)d
for RBF kernel, where

n is the number of samples, and d is the dimensionality of the data as this
range provides the needed connectivity [6].

In anomaly detection, pairwise distances between the samples of the data are
important in detecting outliers. Thus, placing a threshold on the distances
might remove the samples that are dissimilar which might be anomalous.

k-neighborhood graph

The k-neighborhood graph, also called k-nn graph, constructs the similarity
graph based on the k-nearest neighbors of each node [12].

This graph selects the number of nearest neighbors based on their distance,
while ε-neighborhood graph sets only the distance of the neighbors but not
the number of nodes, where the choice of k is in the order of log (n) [6].

The k-nn graph produces a sparser representation of similarities than the
full adjacency matrix, W [6]. This representation might exclude samples
which are not in the nearest neighborhood range, which makes these graphs
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unpopular for anomaly detection task.

Fully connected graph

k-nn and ε-neighborhood graphs use thresholds to select distances used for
defining similarities. Fully connected graphs [6] contain the entire adjacency
matrix W without any thresholds.

In machine learning tasks, for instance in anomaly detection, it is usually
important to examine similarities or differences that exist among the entire
samples. For this purpose, fully connected graphs might provide better so-
lution than the k or ε-neighborhood graphs.

In the previous sections, we have introduced background knowledge which
help construct a graph and study its properties. In the next section, we study
the different properties of graphs.

3.4 Graph properties

3.4.1 Node properties

Node degree

Node degree is a term describing how many samples are incident on or dis-
tributed around a particular node [13]. Node degree is the sum of the el-
ements along the rows of the adjacency matrix, W [6]. Usually the node
degree is represented by di, where

di =
∑N

j=1wi,j, where W = {wi,j}, for i, j = 1...n

If there are n nodes in a graph, d is n × 1 a column matrix. di ∈ d shows
the distribution of samples around node i.

d =


d1
d2
...

dn−1
dn
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Node degree can be used as one measure to analyze the connection among
different nodes and the structure of the graph. Nodes with higher degrees
will have more incident edges than nodes with lower node degrees [14]. The
degree of nodes can be used to study similarity of the nodes by visualizing
how samples are distributed around each node.

The definition of node degree is different for directed and undirected graphs.
If the graph is undirected, there are no edges entering and exiting that node
and the original definition of node degree will be used.

In directed graphs, there are incoming and outgoing edges to and from a
node each having different edge values, wi,j. Thus, the node degrees have to
be defined separately as incoming and outgoing node degrees, and the the
total node degree will be [14]

di = dini + douti

Node degree matrix

The node degree matrix, D , is a diagonal square matrix whose diagonal
entries are the node degree values di and the rest off-diagonal elements zero.
The node degree matrix has the form:

D =



d1

d2 0
. . .

0 dn−1
dn


Node degree distribution

The term node degree distribution, Pd, defines the probability that a ran-
domly chosen node has a node degree value di, which similarly can be ex-
pressed as the fraction of nodes in the network having the node degree value
di. The incoming and outgoing node degree distributions of directed graphs
can be separately calculated using their respective node degrees [14].
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Size of sub-vertices

Size of sub-vertex Sv ⊂ V equals the sum of the degrees for all the vertices
in Sv [6, 15]. It can be represented as:

Vol (Sv) =
∑

j∈Sv
dj

3.4.2 Disparity

Disparity is a term used for describing the dominance of a certain node over
other sets of nodes [14]. This can be formulated from the adjacency matrix
and the node degree as:

yi =
∑n

j∈Ni

(
wi,j

di

)2
,

where Ni defines the first i-th neighbors of the similarity matrix W . If
fully-connected graphs are considered, the neighborhood extends over all the
neighbors (the entire nodes).

Y =


y1
y2
...
yn


Each row i of Y describes the dominance of the node i over the rest of n− 1
nodes.

Disparity might be useful in understanding the nature of individual nodes
with respect to all other nodes or some group of nodes in the network.

3.4.3 Random walk matrix

Random walk matrix of a graph is a matrix whose entries pi,j define the
probability of transition from node vi to node vj in one step [11, 16]. It is
usually represented with matrix

P =


p1,1 · · · p1,n

...
. . .

...
...

. . .
...

pn,1 · · · pn,n
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In short, we can write pi,j = Prob (vj = j | vi = i) =
wi,j

di
, where di =

∑
j wi,j

is the degree of node vi.

The random walk matrix can be derived for weighted graphs using the rela-
tion [11]:

P = D−1W

The matrix P has the following properties:

• pi,i = 0 for graphs with no cycles, that is no transitions to same nodes

• the rows sum to one [15]

• its eigenvalues λi are such that λ1 = 1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 [15]

3.4.4 Graph Spectrum and Laplacian

The graph Laplacian L, also called the combinatorial Laplacian [18], is the
difference of the node degree matrix D and the adjacency matrix W [17].
Mathematically, it is expressed as:

L = D−W

The normalized Laplacian matrix Ln is formulated as:

Ln = D−1/2LD−1/2

Both L and Ln are full n× n matrices.

The graph spectrum is defined as a matrix containing eigenvalues λi of the
graph Laplacian, L [17].

Some important properties of the graph Laplacian and spectrum include [17]:

•
∑

i λi 6 n iff G has no isolated vertices

• The spectrum of G is the union of the spectrum of the connected
components in G
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Fiedler Vector

If one arranges the eigenvalues of the graph Laplacian L from the smallest to
the largest, such that 0 6 λ1 6 λ2 6 · · · 6 λmax, the eigenvector associated
with λ2, the second smallest eigenvector, is called the Fiedler vector [19].

3.4.5 Centrality

Centrality is a measure describing importance or relevance of nodes in a net-
work [20]. The network can be either a weighted or unweighted graph.

The concept of centrality was originally used in social graphs to analyze the
interaction between agents (actors) in social networks but now has been used
in different kinds of complex networks [21]. It can be one of the following:
degree, betweenness, closeness and eigenvector centrality.

Degree centrality

Degree centrality of a vertex, abbreviated CD (vi) , measures the importance
of a single vertex in the graph.

It can be calculated for a node vi with degree di and the number of vertices,
|V| [22] as:

CD (vi) = di
|V|−1

A node will be called central if it has higher degree value. Nodes with rela-
tively lower degree values have weaker link to the network than the central
nodes [22].

Betweenness centrality

Betweenness of a node vi, also called load [14], is the ratio of the shortest
paths σn1,n2 that pass through the node vi to the shortest paths between
nodes σn1,n2 [14, 22, 23]. This can be written as [23]:

CB(vi) =
∑

n1 6=n2 6=vi
σn1,n2 (vi)

σn1,n2
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The shortest path from n1 to n2 should have the node vi neither as a starting
nor an ending point. The path can be calculated using breadth-first search
or other standard algorithms [14].

Closeness centrality

The closeness centrality, Cc (vi), is the reciprocal of the shortest distance
between the vertices of a graph [23].

For node vi ∈ V, it is defined as [23, 24]

Cc(vi) = 1∑
nt∈V dG(vi,nt)

where dG(vi, nt) is the shortest distance between the nodes vi and nt.

Eigenvector centrality

Eigenvector centrality uses the largest eigenvector, lk , of the adjacency matrix
W as a measure of relevance [25, 26]. It is computed from the adjacency
matrix W and the largest eigenvalue λk of W as:

(lk)j =
(Wlk )j
λk

Google [27] used a variant of eigenvector centrality to create an algorithm
called PageRank that ranks web pages and hyper-links pointing to and from
different web pages [28]. PageRank uses power iteration to solve the eigen-
vector centrality equation on a modified form of the adjacency matrix [26].



Chapter 4

Graph based clustering

4.1 Introduction to unsupervised learning

Unsupervised learning is a paradigm in machine learning which does not uti-
lize any label information in the data.

The goals of unsupervised learning include discovering similar groups or clus-
ters in the data (clustering), formulating the underlying distribution gener-
ating the data (density estimation), or visualizing the data onto a lower
dimensional space [29].

The following sections focus on unsupervised clustering methods with more
emphasis on graph based spectral clustering methods. In the last section, a
new graph based clustering algorithm will be proposed.

4.2 Clustering methods

There are different types of clustering methods. Here we discuss mostly used
clustering methods in machine learning: k -Means Clustering.

4.2.1 k-Means Clustering

The main goal of k -means clustering is partitioning a data set into groups
of similar patterns. If we have a dataset of d-dimensional vector X, where

21
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X = {x1,x2, . . . ,xn} where n is the number of samples, then k -means clus-
tering partitions X into k groups.

Points inside a cluster have smaller distances than different points within
different clusters, that is intra-cluster distances are smaller than inter-cluster
distances. The number of clusters is usually unknown and has to be known
in the beginning of the clustering [29].

The number of clusters, k, can be estimated using certain optimization cri-
terion, or from some expert prior knowledge about the dataset. Then each
ki ∈ |k | can be represented with a prototype vector µki where ki = 1, 2, ..., k
and µki is d dimensional [29].

k -means clustering has an objective function J:

J =
∑n

N=1

∑k
ki=1

(
rN,ki ‖xN − µki‖

2)
where,

rN,ki =

{
1 if xN ∈ ki

0 otherwise

which tries to minimize the euclidean distance of a sample xN from a pro-
totype vector µki . This will assign the sample to the ki-th cluster. Thus, a
sample point has to be in one of ki ∈ |k| clusters making the k -means a hard
clustering algorithm.

4.2.2 Other Unsupervised Learning Methods

There exists other clustering methods like hierarchical clustering [30], co-
clustering which clusters columns and rows of the data at the same time.
This helps to know which rows and columns exhibit similar patterns. In
addition, there are models described as local [31]. These models process the
data in specified regions and find fits in that region. The input samples are
localized in to groups (clusters). The models are collectively called compet-
itive learning methods and include Self Organizing Maps (SOM), On-line
k -means and Adaptive Resonance Theory (ART).
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4.2.3 Graph based spectral clustering

Graphs have been introduced in Chapter 3 as tools of data analysis. In
this section, we describe how to cluster data from a graph. In the following
subsections we discuss some existing spectral clustering algorithms.

Graph based clustering in general refers to approaches that cluster the data
based on the graph spectrum, which refers to the eigenvectors of the graph
Laplacian.

Shi-Malik: Normalized Cut

This method was first introduced by Shi and Malik [32]. The idea of their
method is to partition vertices V of a graph G = (V,E) into sets Vi and Vj

such that V1 ∪V2 = V and V1 ∩V2 = ∅.

They call the method of graph partitioning Ncut which stands for normalized
cut. A cut of a graph is defined as the degree of dissimilarity between the
partitions V1 and V2 measured with all the edges between the partitions
removed [32]. Mathematically,

cut (V1,V2) =
∑

vi∈V1,vj∈V2
wi,j

The theoretical background and proofs are provided in the publication of Shi
and Malik [32]. Algorithm 1 describes the normalized cut algorithm.

Algorithm 1 Normalized Cut for graph partitioning [32]

1. Construct a weighted graph G = (V,E) from the data, where the
weights (edge values) measure the similarity of the nodes
2. Solve the eigenvectors of (D−W)x = λDx
3. Use the eigenvector associated with the second smallest eigenvalue to
bipartition the graph
4. If necessary, partition the segmented parts recursively

Step 3 of algorithm 1 partitions the graph into two subgraphs based on the
sign of the second smallest eigenvector (Feidler vector) where positive values
are in one cluster and negative values are in the other cluster, its median
value or by searching for the best partitioning value with the best normal-
ized cut [32].
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There have been different variants of the normalized cut method suggested
by different authors. Von [6] uses a k -means algorithm on the eigen de-
composition of step 2, by selecting k columns of the eigenvectors and then
performing the k -means clustering on the chosen eigenvectors.

Algorithm 2 Shi-Malik with k -means clustering [6]

1. Construct a weighted graph G = (V,E) from the data, where the
weights (edge values) measure the similarity of the nodes
2. Solve the eigenvectors of (D−W)x = λDx
3. From the generalized eigen-decomposition of step 2, choose the first k
columns of the eigenvectors from the decomposition in step 2
4. Perform k -means clustering on each row of the chosen eigenvectors

There have been different approaches to spectral clustering method.
In [33], a new algorithm for spectral clustering with an objective function
that minimize the error measure between a given partition and the minimum
normalized cut partition is suggested.
In [34], a similar approach with algorithm 2 is used except the authors nor-
malize the rows of the chosen eigenvectors of step 3 to norm 1.
In [35], the authors present kernel k -means algorithm and derive the nomi-
nalized cut algorithm as a special case of the kernel k -means.
In [36], the authors suggest a new K -way clustering method that is able to
partition the data into K clusters.

Most of the mentioned spectral clustering algorithms are highly dependent
on the eigenvector decomposition of the graph Laplacian and are variants of
the Shi and Malik’s method.

In the following section, we propose a new graph partitioning algorithm based
on the node degree values without using eigenvalue decomposition on the
Laplacian.

4.3 Proposed method

In Section 3.4, different properties of a graph are discussed. Centrality was
one concept used to study properties of graphs or networks as mentioned in
subsection 3.4.5. We use the degree centrality property of a graph to bipar-
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tition the nodes into two disjoint sets of nodes. The choice of this measure
is due to its easiness of computation.

We call our algorithm NodeClustering, since it uses the node properties to
do the clustering. In the following subsections, we explain NodeClustering

method and show the method with an example.

4.3.1 NodeClustering: Node Bi-partitioning Algorithm

This section explains the main work of the thesis. Algorithm 3 list the steps
of the method.

The first step is constructing a weighted graph from the given data Xd
N,

where N represents the observations and d represent the dimensions. In the
data, there are different feature values and there are variations in the in-
dividual values. If one wants to compare these values, features have to be
on similar footing. Scaling and normalization are preprocessing method to
remove such effects and make features comparable. Logarithmic scaling is
one example [37].
The pairwise distances between the scaled samples can be computed us-
ing the euclidean, Jaccard or other methods. Applying one of the kernels
on the pairwise distances in table 3.1 will give the similarity matrix of the
samples,W.

If xi and xj are samples from the data X, the pairwise similarity between
the samples using the RBF kernel can be calculated as:

wi,j = exp(−σ × ‖xi − xj‖2),

where σ is the scaling parameter for the kernel and its inverse 1
σ

is the width
of the kernel [29].

The similarity matrix W, will be n× n matrix containing the pairwise simi-
larity of all the samples, and the diagonal of this matrix is set to zero, as the
distance between the same features is zero. The node degrees were computed
by summing the rows of W as shown in step 3. This gives the individual
node degree values in a column matrix d,
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d =


d1
d2
...

dn−1
dn



Algorithm 3 Node-Clustering Algorithm: NodeClustering

Input:Data X, threshold of partition τ
Output: Set of nodes V1 and V2 such that V1 ∪V2 = V and V1 ∩V2 =
∅
1. Normalize the data to XN, for example using logarithmic scaling
2. Construct the pairwise distance between the samples of X, and
form the adjacency matrix W {this creates a weighted undirected graph
G = (V,E), where nodes are in V and edge values are in W}
3. Calculate the node degrees di =

∑
j wi,j, where W = {wi,j}; d = {di} ,

where i ={1, . . . , n}.
4. Initialize τ with some value in the value range of d
5. Output Vi = {i : di < τ}, Vj = {j : dj ≥ τ}

Each di ∈ d can be interpreted to signify the similarity around the node vi
with respect to other nodes in the graph.

If some set of nodes Vi ∈ V have their di ∈ d values closer than other set of
nodes Vj ∈ V, then original features in the node set Vi will have more closer
pairwise similarity values in the similarity matrix and hence in the original
input space and are expected to have similar properties than the nodes in
set Vj.

A difficult question is setting the threshold τ which sets the limits of parti-
tions on the individual node degree values.

4.3.2 Why NodeClustering work?

In this section, NodeClustering is demonstrated with an example toy data.

One reason why NodeClustering is valid is the use of the kernel transforma-
tion from the input space Rd to n×n kernel matrix. This transformation will
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make the constructed adjacency matrix capture similarities more effectively
than in the original space.

The second argument is the nature of the similarity matrix. The entries of
the matrix contain pairwise similarity between the individual feature values.
The similarity matrix also provides the node degrees, which are the sum of
the rows of the similarity matrix.

The following subsection provides an example of a known background process
generating the data and how well the NodeClustering algorithm discovers
the generating process.

4.3.3 Example with a synthetic data

A simple demonstration of the node degree and how it captures the similarity
of the samples is shown next for a synthetic data.

The data is generated from two different probability distributions, where the
first ten samples of the data are from a random normal distribution with zero
mean and 0.5 variance. The rest ten samples are also from a random normal
distribution with 0 mean and 0.25 variance as follows:

X1 ∼ randomNormal (10, 3) , X2 ∼ randomNormal (10, 3)

A single dataset X comprising both sets is formed and let X = (X1 ∪X2).
A weighted undirected graph is constructed from X using RBF kernel, using
the scaling of the kernel as 0.5 , by concatenating X1 and X2 one after the
other. The degrees of the 20 nodes are obtained by summing the rows of the
adjacency matrix W of the graph. Figure 4.1 plots each of the node degree
values with respect to the sample (node) it represents.
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Figure 4.1: Node degree values of a synthetic dataset

The figure shows the first 10 nodes from the left (group 1) are in proximity
to each other than the right most 10 nodes (group 2). There is a big jump
(transition) in the degree values from node 10 of group 1 to node 11 of group
2. The center of the jump can be considered as a threshold that splits the
graph into group 1 and group 2. Choosing the center value as the mean of
the node degrees is one example of threshold. This threshold can identify
samples generated by the same distribution.

The next chapter discusses application of NodeClustering for anomaly de-
tection with two real world datasets.



Chapter 5

Anomaly Detection with
Graphs

This chapter introduces two real network traffic datasets from IP networks,
studies properties of graphs constructed from these data and applies the
method NodeClustering for anomaly detection in these graphs. Finally, a
thorough discussion of the results will be given.

5.1 Introduction to the data sets

In the thesis two traffic datasets were considered: NSL-KDD 99 dataset [44]
and a set generated in Nokia Siemens Networks (NSN) laboratory, called
NG-set. A brief description of the datasets with used preprocessing method
and feature lists is given in the following subsections.

5.1.1 NSL-KDD 99 dataset

KDD-99 is one of the widely used and studied datasets in anomaly and in-
trusion detection research. This data has been used in validating and testing
machine learning and data mining methods for various tasks, for instance in
anomaly detection.

The original data, initially from a project of Defense Advanced Research
project Agency (DARPA) [39], was collected for about two weeks simulating

29
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Local Area Network (LAN) of a United States Air force military base [38].
Lincoln Laboratory [40] of the Massachusetts Institute of Technology (MIT)
made the simulations in 1998. The NSL-KDD 99 dataset is a derivative of
the DARPA 98 dataset.

The original task in the KDD-99 cup competition was to build a supervised
learning method that can classify samples of the data, also called connec-
tions, into attack and normal labeled samples. Thus, the data has training
and testing sets available for learning a model and evaluating the designed
method. The training set has labels describing each observation as normal
or attack. However, the data has also been used in developing unsupervised
learning methods which do not use the label information in any manner.

Despite the popularity of the NSL-KDD 99 dataset in the machine learning
community, there have been publications describing its shortcomings. Prob-
lems in the set-up that generated the data among other problems are listed
in [43]. Moreover, problems of redundant samples in the training and testing
set are mentioned [44] and the authors provide a new data derived from the
KDD-99 by removing the repetitions, called NSL-KDD [45]. NSL-KDD data
is considered a better option than the original KDD-99 set as it solves some
of the problems of the original NSL-KDD 99 data.

In this thesis, the NSL-KDD 99 set was used. In addition to the aforemen-
tioned problems, this set still faces problem of outdatedness.

Preprocessing

In network traffic data analysis, it is possible to use either packets or flow
data for different analysis and detection tasks.

The difference between flows and packets is that a packet contain all the
information sent from the source to the destination, where as a flow summa-
rizes the packets with in the same connection. These details in the flows are
considered as features for the traffic data. There are also different tools that
can convert between these data formats.

Argus tool [41] is one example which can convert packets into flows. No con-
version is required as the flows were already given in [45]. A smaller sample
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was randomly chosen from the training data to make the experimental data
for this thesis. It should be noted here that it is equally possible to use the
testing data as the source of the experimental data.

The experimental data contained 10 % attack and the remaining 90 % of
attack-free (normal) sample. The structure of the data is that all samples
from normal traffic are followed by the attack traffic. This structure is chosen
to observe any immediate changes of pattern in the graph.

Features

The NSL-KDD 99 dataset has a complete description of features listed in [38].
There are a total of 41 features, of which 7 are discrete and the rest 34
are continuous-valued. There was one column of the number of outbound
commands feature that was entirely zero and was removed. This reduced the
total continuous features to 33 listed in Appendix A.1.

5.1.2 NG-set

The original KDD data was from 1999, or exactly in 1998 when the DARPA
dataset was collected, and certainly lacks the capability of representing the
current threats and attacks in the world of network security. There are newer
services, protocols, and applications that did not exist in 1999, with differ-
ent patterns and behavior to the network traffic data. Taking these factors
in to consideration, a new dataset from a small network setup in NSN was
generated. This will be called the NG-set. The name initials signify the data
is generated (G) from a network (N) not from an artificial simulator.

NG-set was collected from a small network of four hosts. There is one ma-
chine generating the attacks and other three machines doing normal activi-
ties, like browsing, sending email, making Facebook updates, phone calls on
the Internet etc. The data set contained 10 Gigabytes of traffic data in 12
different capture files in packet capture (pcap) format. Due to the size of the
data, only the last two capture files with a size of 730 megabytes were used
in the thesis.

Metasploit [46] framework generated the attacks along with other smaller
scripts that automated the attacks. The attacks mainly included port scan-
ning, password guessing, vulnerability scanning and exploiting based on the
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scans. In vulnerability scanning, different components of the systems for
example software versions or system settings were checked and if associated
vulnerabilities were found with the versions or the system settings, the sys-
tem was attacked. In addition, password guessing checked if passwords for
some service or application can be guessed easily. For instance, logging as
root user using the same user name and password root is an example of a
password guessing attack. Port scanning refers to sending crafted packets to
specific ports in the scanned computer, and waiting for a reply. The goal is
to learn whether there is a service running in a port (or services in a set of
ports).

Preprocessing

The packet data was captured in a tool called Wireshark. The packet form of
the data was unusable for the designed graph based clustering method since
the packets do not have the features explicitly listed. Thus, the packet data
was converted into flows.

Each flow represented a connection made from a source IP address to a
destination IP address. The traffic data in captured pcap files contained
information about the packets. The graph based method will require features
from the flows. For this reason, a tool called argus [41] was used to convert
the packets into flows. It has command line tools called argus and read
argus (ra) that can filter the pcap files into flow transactions based on the
packets original capture time [42]. Processing the packets into flows was done
in Linux environment as it was easier to setup Argus in such environment.
The argus tool first converts the captured traffic data in the pcap to a format
readable by the read argus tool. This tool was used with some command line
options which produced the NG-set. The data contained features that are
interesting to the security analysis. The actual preprocessing commands are
listed in Appendix C.

Features

The NG-set included discrete and continuous valued flow features. A to-
tal of 23 features were extracted from the flow data. Although Argus has
more choice of features than those specified in Appendix B, some had a
non-numerical value which led to their exclusion from further analysis. A
complete list of the features is listed in Appendix B.
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5.2 Traffic data analysis with Graphs

5.2.1 NSL-KDD 99 Dataset

Graph construction

NSL-KDD 99 data has huge number of samples. Graph construction with
the original data will be computational expensive. This limitation was solved
by randomly selecting a small traffic set with 1500 samples and 33 features.

The selected samples comprise majority of the traffic with no attacks (nor-
mal samples) and the rest with attacks. This resembles a normal operating
network. It has to be noted that attacks are anomalies and furthermore the
term anomaly can describe other events that diverge from normal pattern.
Figure 5.1 shows the selected samples on the X-axis and their feature values
on the Y-axis.
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Figure 5.1: NSL-kDD 99 dataset

In figure 5.1, majority of the features have small values close to the X-axis,
while few have higher values with large values.

The selected smaller set X contains 90% normal and the rest 10% attack
traffic. Without loss of generalization, the attack samples are concatenated
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after the normal samples and logarithmic scaling produces XN, where

X = {x1,x2, · · · ,x1500}T , XN = log(X + 1),

The addition of the constant 1 avoids the problem of infinite values with
feature values of zero.

RBF kernel was applied on the scaled data to construct the similarity matrix
of the graph W which is 1500×1500 symmetrical matrix, where W = {wi,j}
and

wi,j = exp
(
−1× δ × (xi − xj)

2)
expresses similarity among the samples xi and xj.

Choosing the scaling parameter of RBF

RBF kernel has hyper-parameter δ that determines how pairwise similarities
are scaled. The choice of this parameter has direct influence on the node
degree values and volume of the graph as discussed in section 3.4.

Figure 5.2 compares the scaling parameter δ with the volume of the graph.
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Figure 5.2: The effect of hyper-parameter δ on the size of the vertex

The scaling parameter δ was selected so that δ ∈ {0.1, 0.2, ..., 1} . This
choice was arbitrary and one could have chosen different values for this. δ
has direct influence on the similarity matrix and on the node degree values.
Volume of graph G with individual nodes of degree di can be calculated as:

V ol (G) =
∑

i∈G di [6]

Figure 5.2 shows that the volume of the graph decreases with the increasing
value of the scaling parameter, δ. The volume of the graph can describe how
compact or dispersed the graph is.

If δ = 1, then the RBF kernel is exactly the same as an exponential kernel
and the resulting graph is dense. When δ decreases to 0.1, the graph’s vol-
ume increases and graph becomes sparse.

The scaling parameter was chosen to be 0.5 with an assumption that such a
graph will exhibit average properties of the dense and sparse graphs.
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Properties of NSL-KDD 99 graph

Node degrees

The node degree di of node i is calculated so that

di =
∑j=1500

j=1 wi,j

and for the entire nodes

d =


d1
d2
...

dn−1
dn


The node degrees show the link that exists within the nodes of the graph.
Nodes with closer feature values will have stronger link and the rest of the
nodes will have weaker links to them. Figure 5.3 plots the individual node
degrees (di) versus the sample node i represent.
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Figure 5.3: Node degree distribution in the NSL-KDD 99 dataset
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The figure 5.3 shows nodes in the right most corner of the plot make a close
and compact group. This group has lower degree node than the remaining
nodes on the left. Moreover, there is a jump from the left group to the
compact smaller node degree valued nodes showing that the nodes in the left
most region have similar patterns than the other nodes. The node degree dis-
tribution provides more detail than provided by the original data set shown
in figure 5.1.

The degree centrality has been presented in section 3.4. It is solely based on
the node degrees and will signify the same property as in figure 5.3. From
this figure, one can anticipate nodes in the right most group to behave differ-
ently than those in the leftmost group. This will be studied by considering
few nodes in both groups using the random walk matrix.

Random walk matrices

The previous analysis with node degrees showed that there are visibly two
groups in the data. The random walk matrix will give more information
about the nodes with probability values.

Random walk matrix P has been discussed in section 3.4. One entry pi,j ∈ P
describes the probability of transitions from node i to node j. One can
calculate P, which is 1500× 1500 symmetric matrix as:

P = D−1 ×W

A new notation P (i, ·) can be used to describe ith row of P. Adhering to the
same interpretation as pi,j, P (i, ·) will represent the probability of transition
from node i to the rest of the nodes in the graph. It should be noted that
pi,i = 0.

The analysis with the node degrees in figure 5.3 has shown there are two
regions: a small compact region on the right (region 1) and the rest of the
region on the left (region2). We pick two nodes from these regions and visu-
alize how the transition probabilities change in these regions.

We pick node 1 from region 2 and node 1500 from region 1. Consequently,
P (1, ·) and P (1500, ·) from P were plotted to visualize any changes in the
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transition probabilities from node 1500 and 1 to the different regions. Fig-
ures 5.4 and 5.5 plot the transition probabilities from nodes of the different
regions.
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Figure 5.4: The first row P for NSL-
KDD data set
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Figure 5.5: The last row of P for NSL-
KDD data set

Figure 5.4 plots P (1, ·), which is the transition probabilities from node 1 to
rest of the nodes in the graph. The transition probabilities have higher values
for the nodes in the left region (region 2) than for those nodes in right most
region (region 1). This can be interpreted as the nodes in region 1 are more
likely to be observed together and behave similarly than nodes in region 2.

Figure 5.5 plots P (1500, ·), which is the transition probabilities from node
1500 to rest of the nodes in the graph. The transition probabilities are higher
nodes in the right most region (region 1) than nodes in the left region (region
1). This can be interpreted as the nodes in region 1 are more likely to be
observed together than nodes in region 2.

The analysis with the random walk matrix has shown that the nodes in the
different regions have different transition probabilities, which signifies that
the nodes have different behaviors when there are transitions from high to
low or low to high probability values.

In addition to the above analysis, one can use other properties of the graphs
to study the similarity among the nodes in the graph.
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5.2.2 NG-set

The NG-set has two preprocessed feature sets as shown in Appendix C. From
these sets, only set 1 (NgSet1) is used for simplicity. This set has about 4000
samples of which 2000 will be randomly chosen to construct a graph and
study its properties.

With similar justifications to the NSL-KDD 99 dataset, the randomly chosen
set contained 90% normal samples and the rest 10% attack samples. More-
over, only the continuous valued features are used for the analysis. Thus,
fully connected, weighted and undirected graphs were constructed.

Graph construction

The samples in the data were logarithmically normalized and pairwise dis-
tances with RBF kernel gave the adjacency matrix. The scaling parameter δ
was set with value of 0.5 with a similar argument given for the the NSL-KDD
99 dataset. Figure 5.6 shows the how the volume of the graph changes with
the scaling parameter.
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Figure 5.6: The effect of scaling on the volume of the graph

The volume of the graph exponentially decreased with increasing value of
the scaling parameter. In the following subsections, node degree values and
random walk matrix will be used to study the property of the NG-set graph.

Node degree

The node degrees were calculated by summing the rows of the adjacency
matrix of the graph. Figure 5.7 shows how the nodes are distributed in the
graph.
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Figure 5.7: The node degrees of the NG-set

There is a variation of the values of the nodes. There are two regions in
figure 5.7. The first region has generally higher node degree values (on the
left most region )and the other region has lower node degree values which
shows smaller values in some parts than other portions of the graph. This
behavior similarly had been observed in the NSL-KDD 99 dataset. The
change in the node degree values is further investigated with the transition
probabilities in the random walk matrix.

Random walk matrix

Entries of the random walk matrix represent the transition probabilities from
one node to another node. There are two regions observed in the node de-
gree values in figure 5.7. Two nodes are picked from the left and right most
regions of this figure and transition probabilities are visualized.

The entries of the rows of the transition matrix can be used to infer the prob-
ability of transition from the current node (which is the current row number)
to another set of nodes excluding the current node. Figure 5.8 and 5.9 plot
the first and the last row of the random walk matrix, P.

Figure 5.8 shows the plot for the first row of the transition matrix, P (1, ·).
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The values show the transition probabilities from node 1 to the rest of the
nodes, 2, 3, ..., 2000. In this figure, the transition probabilities have higher
values in most of the left region and lowest values in the right most regions.
This shows that nodes in the left regions have higher probabilities of being
observed together with node 1 than the nodes on the left region.
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Figure 5.8: The first row of the tran-
sition matrix P of NG-set
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Figure 5.9: The last row of P for NG-
set

Figure 5.9 visualizes the last row of the transition matrix, P (2000, ·). The
entries of this row represent the transition probabilities from node 2000 to
nodes 1, . . . , 1999. This plot shows that there are stronger transition prob-
abilities from node 2000 to the nodes in right most region than most of the
nodes in the left region. In the left region, more nodes have lower transition
probabilities of being observed with the node 2000. In addition, there are
few nodes in the left region where there are higher probabilities of transitions
to node 2000.

The analysis with undirected weighted graphs on the network traffic datasets
have shown that there are regions of different node degrees and transition
probabilities. Both of these analysis have discovered similar regions of nodes
that showed similar variations.

In the next section, NodeClustering is applied to both datasets for parti-
tioning the graphs into more general regions, which include the nodes that
might have similar node degree values or transition probabilities but are in
opposite regions.
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5.3 Anomaly detection with NodeClustering

In Chapter 4, NodeClustering was introduced for graph bi-partitioning task.
In this section, a slightly modified version of this algorithm (listed in algo-
rithm 3) is used to perform graph clustering for anomaly detection task.

Algorithm 4 describes how the proposed node clustering method can be used
in anomaly detection task for network traffic data. The rest of this section
describes design decisions made in the different steps of the algorithm.

Network data can have continuous and discrete valued features. Thus, a
graph constructed from the features can be either weighted or unweighted.
The graphs from the continuous and discrete features are called continuous
and discrete graphs respectively. In this thesis, weighted continuous graphs
have been used, because majority of the features in both datasets are con-
tinuous valued as shown in Appendix B and [38]. Hereafter, the weighted
continuous valued graphs will be named as graphs for simplicity

Algorithm 4 Node-Clustering Algorithm: NodeClustering

Input: Traffic data X, threshold of partition τ
1.Select the continuous features from the data, XC

2. Normalize XC

3. Construct the pairwise distance in XC, and form the adjacency matrix
W {this creates the weighted undirected graph}
4. Calculate the node degree di =

∑
∀j wi,j, where W = {wi,j}, and

d = {di}, i = 1 . . . n
5. Initialize τ with the mean of the node degree, dµ
6. Output A = {i : di < τ}, N = {i : di ≥ τ}

The other steps of the algorithm are basically the same as described in algo-
rithm 3. On the other hand, the threshold of separation has been set to the
mean of the node degree values in di. This choice is a heuristic based.

The threshold τ separates normal nodes from anomalous ones and assign
the nodes into two such disjoint sets. An important question is which nodes
are assigned to which sets. Since we do anomaly detection in a normally
operating network traffic, data from such network contains higher number of
normal and fewer anomalous samples. In such networks, it is expected that
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many of the samples are highly similar and few deviate from this similarity.

The similarity matrix, W, is computed with RBF kernel. It will have higher
value for wi,j if samples i and j have higher pairwise similarity. In the nor-
mally operating network, majority of the samples will have high similarity
values and the remaining anomalous samples will behave differently from the
normal ones and will be less similar to the normal nodes. Thus, nodes with
equal or higher degree nodes than τ will be assigned to the normal set N
and the remaining nodes will be assigned to the anomalous set A.

The evaluation of NodeClustering was made using the indicators in ta-
ble 5.1, which shows the matrix used for evaluating the performance. The
specificity and sensitivity values will be particularly used to evaluate the al-
gorithm. True labels of the NSL-KDD 99 and the NG-set have been provided.
These have been used in table 5.1 for evaluation purposes.

Real Anomalies Normal Traffic
Reported Anomaly Set True Positive (TP) False Positive(FP)

Reported Normal Set False Negative(FN) True Negative (TN)

Table 5.1: Evaluation matrix

From the different values in table 5.1, the true positive (sensitivity) and false
positive rates (1− specificity) will be derived as

True Positive Rate = sensitivity = TP
TP+FN

, and

False Positive Rate = 1− specificity = 1−
(

TN
TN+FP

)
Sensitivity defines the percentage of anomalies that are correctly identified as
anomalies by the algorithm from the total known anomalies in the data, while
specificity defines the percentage of normal traffic that is correctly identified
as normal from the total known normal traffic data.

The datasets were chosen so that we randomly split set of 1500 samples from
the original NSL-KDD 99 set and 2000 samples for the NG-set. The ran-
dom splitting was done 20 times to make better performance measure and
average values of the different splits were taken. Graphs were constructed
for each split and for every run we measure the performance values. For all
the splits, the threshold τ was set to be the mean of the node degree values d.
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Table 5.2 shows the sensitivity and specificity values obtained from algo-
rithm 4.

Data Sensitivity Specificity
NSL-KDD 99 0.9990 0.6702
NG-set 1.000 0.5516

Table 5.2: Performance of NodeClustering on NG-set and NSL-KDD 99

The results in table 5.2 show that NodeClustering has sensitivity of almost
100% for both datasets. This means that it successfully identifies all the
known intrusions in the data.The specificity value shows that NodeClustering
will identify 67.02% of the normal traffic as normal and mis-classify 32.98% of
the normal samples as intrusive. In the case of the NG-set, NodeClustering
will recognize 55.16% of the normal traffic as normal and the remaining
44.84% as intrusive although it is labeled normal in the data.

Grouping normal traffic to the intrusive set might be less dangerous than as-
signing intrusive sample to the normal set. Moreover, the labels in the given
dataset are of only attack labels and NodeClustering finds out anomalous
nodes which include attacks samples, samples from mis-configured network
components or any samples that deviate from the normal traffic data pat-
tern. This section showed NodeClustering successfully identified the known
intrusions to the anomalous set in the studied datasets, and achieved graph
bi-partitioning to accomplish the anomaly detection task.

In the next section, we discuss the validity of NodeClustering results and
compare its performance with the state of the art spectral clustering method.

5.4 Discussion of the results

In the previous section, the results of the NodeClustering algorithm had
been shown. We used RBF kernel with scaling parameter of 0.5 and showed
how the volume of the graph changed with this parameter. In addition, we
set the threshold of separation between normal and anomalous samples as
the mean of the node degrees.
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In the coming subsections, we will evaluate how the performance of the
NodeClustering algorithm varies with the scaling parameter of the kernel
δ, the threshold of separation τ . In addition, we make comparisons with two
variants of a spectral clustering method.

5.4.1 Effect of scaling parameter δ

NodeClustering constructed weighted undirected graphs using the RBF ker-
nel

wi,j = exp(−1× δ × ‖xi − xj‖2)

where δ is the scaling parameter. This parameter has the effect of scal-
ing the pairwise distances between the samples and affects also the volume
of the graph. We show how changing its value affects the performance of
NodeClustering method.

Figure 5.10 plots the performance measures versus the width hyper-parameter
for the NSL-KDD 99 dataset. The scaling parameter has been chosen in the
range 0.1, . . . , 1 for this demonstration and for every threshold value the av-
erage of 30 runs for the estimation of the performance values has been done.
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Figure 5.10: Effect of scaling parameter δ on the FPR and TPR of NSL-KDD
99 dataset

This figure shows increasing the scaling parameter does not affect the sen-
sitivity at all, while the specificity drops by almost 10% on increasing the
scaling, which means NodeClustering will recognize fewer normal samples
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with higher scaling parameter than with the smaller scaling parameter. Thus,
increasing the width results in larger false positive rate while smaller values
of δ will result in a smaller false positive rate. Moreover, decreasing or in-
creasing the scaling has no significant effect on the true positive rate. In
KDD-NSL 99 set, this analysis provides an evidence that compact smaller
volumed graphs discover intrusions with the same true positive rate as the
larger volumed graphs, but with a smaller positive rate. We apply the same
procedure as above for the NG-set. Figure 5.11 shows the results.
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Figure 5.11: The effect of the width hyper-parameter on the TPR and Speci-
ficity of NG-Set
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This figure shows the sensitivity of NodeClustering increase rapidly and
then start decreasing with increasing of the scaling. In addition, the speci-
ficity also follows similar trend. The increases in the sensitivity and speci-
ficity are observed when the scaling parameter is smaller. This means that
the graph is denser at this scale than at higher scales.

The analysis with the scaling parameter of the kernel showed that it is good
to use NodeClustering algorithm with smaller scaling values to get better
performance. This might be due to the fact that volume of the graph is really
small and anomalies can easily stand out from the dense volume of the graph
easily.

5.4.2 Effect of threshold τ

NodeClustering uses the threshold τ for bi-partitioning graph nodes either
as normal or anomalous. We used heuristics and set its value to the mean
of the node degree values, but now we use different values for this threshold
and study its effect on the performance of NodeClustering.

We chose different scales for the thresholds. The factoring scale was varied
from 0.1 × dµ to dµ. This scaling decreased the threshold values by 90%
maximum. Figure 5.12 plots the effect of decreasing the threshold below the
mean of the node degree on the NSL-KDD 99 set.
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Figure 5.12: Effect of threshold τ on performance of NSL-KDD 99 set

This figure shows that increasing the threshold τ keeps the sensitivity increas-
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ing and remains stable after 0.6× dµ till the dµ threshold. The specificity of
NodeClustering keeps on decreasing for the threshold values. The optimal
value might be around the 0.6 × dµ, where all the known intrusions are re-
ported as anomalies. At this point, about 80% of normal traffic is reported
correctly by NodeClustering.

5.4.3 Comparisons with spectral clustering method

NodeClustering algorithm was applied on two network traffic datasets and
results have showed the algorithm can detect all the known intrusions in
data. Now we compare the results of this algorithm against two variants of
a graph based spectral clustering method from Shi and Malik.

We compare results of NodeClustering with that of Shi and Malik’s spectral
clustering method called normalized-cut [32]. Shi and Malik perform gener-
alized eigenvector decomposition between the un-normalized graph Laplacian
and the node degree matrix, from which they use the eigenvector associated
with the second smallest eigenvalue of the decomposition as graph partition-
ing criterion. This eigenvector which is associated with the second smallest
eigenvalue is called Fiedler Vector.

We then follow two variants of the Shi-Malik spectral clustering comparison.
We briefly list the algorithms here. The first method is the original method
itself, shown in algorithm 5. We call this Shi-Malik 2.

Algorithm 5 Shi-Malik 2 [32]

1.Construct a weighted graph G = (V,E) from the data, where the weights
(edge values) measure the similarity of the nodes
2. Solve the eigenvectors of (D−W)x = λDx
3. Use the eigenvector associated with the second smallest eigenvalue to
bipartition the graph
4. If necessary, partition the segmented parts recursively

In algorithm 5, there is possibility of recursive segmentation of the two par-
titions (from step 2) further. However, in anomaly detection, we need two
groups showing normal and anomalous samples. Thus we do not perform step
4. Bi-partitioning of the graph is done by using the sign of the eigenvectors
associated with the second smallest eigenvalue. Positive signed eigenvalues
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make up one cluster and negative valued eigenvectors make another cluster.

The second method is a variant of algorithm 5, which we call Shi-Malik 1
as listed in algorithm 6.

Algorithm 6 Shi-Malik 1 [6]

1. Construct a weighted graph G = (V,E) from the data, where the
weights (edge values) measure the similarity of the nodes
2. Solve the eigenvectors of (D−W)x = λDx
3. From the generalized eigen-decomposition of step 2, choose the first
k -columns of the eigenvectors from decomposition in step 2
4. Perform k -means clustering on each row of the chosen eigenvectors

Shi-Malik 1 uses k -means clustering with k = 2 on the eigenvector asso-
ciated with the second smallest eigenvalue. We used the cluster indices as
indicators of membership.

We used the mean of the node degrees as threshold of separation in algo-
rithm 4.

The three algorithms were run on the same data segments that were drawn
randomly from the datasets. This random splitting was done 30 times and
average of the 30 runs was taken to get the sensitivity and specificity values
of the algorithms. We will use these values as a measure of performance.

NSL-KDD 99 dataset

We randomly split the NSL-KDD 99 dataset into 30 sets. We used the scaling
parameter of the RBF kernel as 0.1. We choose this value based on effect of
the scaling on performance as shown in 5.10. We compare the performance of
both implementations of Shi and Malik with our NodeClustering algorithm
on the same data splits and we take the average of performance values on
the runs. Table 5.3 shows the result of the comparisons on the performance
of the three methods.

Table 5.3 shows NodeClustering method has the best sensitivity and the
highest specificity values, which means that it detects all the known intru-
sions in the data and can detect 66.67% of the normal traffic as normal.
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Method Sensitivity Specificity
Shi-Malik 1 0.5025 0.4962
Shi-Malik 2 0.5533 0.6598
NodeClustering 0.9987 0.6670

Table 5.3: Comparison of NodeClustering method on NSL-KDD 99 with two
methods of Shi-Malik

Moreover, table 5.3 shows that NodeClustering has the highest true posi-
tive rate and lowest false positive rate. This shows that NodeClustering is
very effective in retrieve intrusive nodes from the traffic data.

NG-Set

We follow the same procedure as the NSL-KDD 99 dataset. We choose
the scaling parameter δ = 0.3 since it had better performance on this scale.
Figure 5.11 showed the plots, which depicts the effect of the scaling parameter
on performance. Table 5.4 compares the sensitivity and specificity of the
three methods.

Method Sensitivity Specificity
Shi-Malik 1 0.4891 0.5329
Shi-Malik 2 0.5145 0.4342
NodeClustering 1.0000 0.6389

Table 5.4: Performance of NodeClustering on NG-set with two methods of
Shi-Malik

It can be seen NodeClustering has the best sensitivity and specificity. Sim-
ilar to the NSL-KDD 99 dataset, NodeClustering detected all known intru-
sive samples and recognized 63.89% of the normal traffic as normal. More-
over, it has the lowest false positive rate.

From the above experiments on the two network traffic datasets, the method
NodeClustering detected all known intrusive samples better than any of the
Shi and Malik methods and has the smallest false positive rate.
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5.4.4 Effect of normal traffic size

Until this point all the experiments had proportion of intrusive to normal
traffic as 1 : 9. This made the experiments resemble a normally functioning
network. We further check the validity of NodeClustering when the pro-
portions change. We vary the normal traffic from 86% to 98% to emphasize
different degrees of normality in the IP network. We test this effect in both
datasets.

NSL-KDD 99 set

For threshold of normal and anomalous traffic samples, we randomly split
the NSL-KDD 99 dataset 30 times and measure average of the specificity
and sensitivity values of for each threshold and all the runs. We use the
same evaluation matrix shown in table 5.1 to calculate the sensitivity and
specificity values for the three algorithms.

Figures 5.13 and 5.14 show how the sensitivity and specificity values deviate
with the amount of normal traffic. Node clustering method achieves the best
sensitivity values for all the studies threshold limits. This proves again our
method is superior and all the known attacks are identified by the method.
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Figure 5.13: Sensitivity of NSL-KDD
99 dataset
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Figure 5.14: Specificity of NSL-KDD
99 dataset

In figure 5.14, the specificity values are indicated for the three methods.This
value decreases when the proportion of normal traffic increases for the method
NodeClustering whereas generally increases with increasing proportion of
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normal traffic data size in Shi-Malik 2. However, Specificity of Shi-Malik
1 increases in the beginning before starting to decline.

In table 5.1, we showed false positive rate is one minus the specificity. Increas-
ing specificity means decreasing the false positive rate. Thus, Shi-Malik 2

has better better false positive rate with increasing normality in the data
although the results have some variances and NodeClustering has results
with less variance.

NG-set

We follow similar procedures in the NG-set as in the NSL-KDD 99 set. We
make 30 experimental runs for 30 random splits of the NG-set with nine
different normal and anomalous sample thresholds. We vary the amount of
normal traffic from 86% to 98%. In addition, the scaling parameter of the
RBF kernel was set as 0.3

Figures 5.15 and 5.16 show the sensitivity and specificity of the three meth-
ods. Figure 5.15 visualizes that when the amount of normal traffic is around
86%, the NodeClustering algorithm performs around 20% less than both
implementations of Shi and Malik. When the amount is increased to 98%,
NodeClustering is able to detect all the attacks in the data and outperforms
both implementations of Shi and Malik with an improvement of almost 50%
true positive rate. Their method finds only about 50% of the attacks in the
data, while NodeClustering finds almost all the intrusive samples as attacks.
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Figure 5.15: Sensitivity of NG-set with
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Figure 5.16: Specificity of NG-set

Figure 5.16 plots the specificity values. These values are related to the false
positives rates. Our node clustering algorithm has almost stable specificity
of about 55%, which is equivalent to 45% false positive rate for most of the
normal traffic thresholds. This means NodeClustering finds around 55%
normal traffic from the total traffic normal set. The two implementations
of Shi and Malik have unstable ranges of specificity values for the different
amount of traffic. Shi-Malik 1 generally gave a better specificity value with
increasing size of normal traffic than Shi-Malik 1.

The comparisons in this subsection showed that NodeClustering is a very ef-
fective method in retrieving intrusive traffic, which are subsets of anomalies.
In normal operation of a network, there are few anomalies (e.g. attacks) and
majority of the subsets in the traffic data are normal samples. The experi-
ments with different sizes of normal traffic have shown that NodeClustering
gives the best true positive rate especially in a normally operating networks.

5.4.5 Application to other datasets

In this section, the validity of NodeClustering to non-security related datasets
is shown. The reason is to demonstrate the robustness of the method and
that it can be used to study similar group of samples in any data. However,
it should be noted that as NodeClustering is a bi-partitioning method and
find two different clusters.
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Fisher Iris dataset

Fisher iris data has well known classes (clusters) is studied. A general fact
about this dataset has three classes. The setosa class includes all the sam-
ples 1 to 50, versicolor class from sample 51 to 100, and virginica class from
sample 101 to 150. And the discovered groups coincided with the structure
defined by the true labels.

Weighted undirected graphs were constructed in similarly manner with the
traffic datasets. Node degree is computed from the adjacency matrix of the
graph to find similar nodes in the graph.

Figure 5.17 plots of the node degree of the iris graph. It shows that there
is one group on the lower left corner until the 50-th sample point, followed
by a long jump into another disperse group on the right top corner which
plots the rest of the 100 samples. In this left group, the nodes show scattered
distribution which looks difficult to be categorize as one.
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Figure 5.17: Node degree plot for Fisher Iris data

The above problem showed that two groups exist with one of the groups
showing un-generalized behavior and other group on the left bottom corner
is clearly visible. We further investigate the nodes in both regions using the
transition probabilities of P matrix and picking nodes from the regions.

Figures 5.18 and 5.19 plot the transition matrix entries P (1, ·) and P (150, ·).
From these plots, it can be shown that there are three groups with the
transition occurring at the 50-th and 100-th.
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Figure 5.18: Fisher Iris data transition
probability of node 1
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Figure 5.19: Iris data transition prob-
ability of node 150

When applying node clustering algorithm, it will retrieve the first class in the
iris data as one cluster, and the other two classes as another cluster. This
shows that node clustering will effectively work as a graph bi-partitioning
method when there are two clearly distinct classes, but when there are more
classes it will report two of the most distant clusters.

5.5 Summary

The study on two network traffic and one non-network traffic sets indicated
that applying NodeClustering on graphs from these sets will bipartition
the nodes. This will give two sets of nodes that are more similar to each
other. We effectively recovered all the known intrusive samples using the
node degree values. Results have been exemplified with visualization of the
node degree values and their Markov random field transition probabilities.
In addition, we observed the following results with the experiments:

• NodeClustering retrieved all the intrusive samples almost with 100%
true positive rate

• how the results of NodeClustering change with the scaling of the ker-
nel function

• how NodeClustering performs in different IP networks by varying the
amount of normal and anomalous samples in the traffic sets and how
it performed better in highly normal operating IP networks, making it
realistic choice
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• how the threshold of separation into normal and anomalous samples
affects the result of NodeClustering

• NodeClustering outperformed two variants of Shi and Malik methods
and results have been compared for different size of normal traffic data

• the performance of NodeClustering with more than two classes (clus-
ters).



Chapter 6

Conclusions

The thesis studied the problem of anomaly detection in IP networks. Anomaly
detection identifies different events that generate abnormal traffic patterns,
for example, attacks or unknown rare events in networks. The goal was to
find anomalies in network traffic datasets collected from normally operating
IP networks.

A new graph based clustering algorithm, called NodeClustering, was de-
signed. This method successfully identified all the known intrusive samples,
which are one example of anomalies.

NodeClustering has a computationally smaller running time compared with
spectral clustering methods, which is only the time it takes to construct the
graph. This property is useful in live monitoring of networks. Other spectral
clustering methods reported half the known intrusive samples as anomalies
with longer computational time while NodeClustering took smaller running
times with better true positive rates. The spectral clustering algorithms for
instance, Shi-Malik’s method focus on finding two comparably sized clusters
while NodeClustering is effective in situations where there is one large clus-
ter, containing majority of the samples, and few points that are distant from
this cluster.

Moreover, NodeClustering method provides system administrators and se-
curity analysts a way to identify attacks, device failures and other rare un-
known events. This makes NodeClustering method an important method
for anomaly detection and troubleshooting of failures in the network. It uses
the node degree property of the graph to partition the nodes without com-
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puting the graph Laplacian or its spectral decomposition. Moreover, the
criterion for partitioning is simple and heuristically motivated. In addition,
NodeClustering was efficient in identifying intrusions in a normal operation
of a network as shown in the experiments.

Currently, NodeClustering algorithm bi-partitions graphs into two sets of
nodes. Although setting a threshold is difficult, in the future NodeClustering
can be optimized to find even more clusters using a different criteria for par-
titioning. This might result in a much smaller false positive rate while main-
taining the current true positive rate.

Additional investigation can be done in scaling the number of samples the
graph construction handles. Moreover, future work also will be constructing
models for normal and anomalous graphs and comparing new graphs based
on their degrees to these reference graphs by using some distance measures
like graph edit distances and also how to integrate discrete graphs into the
anomaly detection and how to use the NodeClustering for on-line learning.



Bibliography

[1] James P. Anderson Co, Computer Security Threat Monitoring and
Surveillance, Technical report,Fort Washington,Pennsylvania, April 1980.

[2] Karen Scarfone and Peter Mell, Guide to Intrusion Detection and Pre-
vention Systems (IDPS), Recommendations of the National Institute of
Standards and Technology,2007.

[3] Rebecca Bace and Peter Mell, Special Publication on Intrusion Detection
Systems, Recommendations of the National Institute of Standards and
Technology (NIST), 2001.

[4] Aurobindo Sundaram, An introduction to intrusion detection, Special
issue on Computer Security, Crossroads 2(4)(1996) 3-7.
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Appendix A

Feature Description of the
NSL-KDD 99 set

Feature name feature description
duration length of the connection
src-bytes number (num) of bytes from the source to the destina-

tion
dst-bytes num of bytes from the destination to the source
wrong-fragment num of wrong format
urgent num of urgent package
hot num of ”hot” indicators
num-failed-logins num of failed attempts to log-in
num-compromised num of compromised conditions
num-root num of root access
num-file-creations num of file creation operations
num-shells num of shell prompts
num-access-files num of operation performed on access control files
num-outbound-cmds num of outbound commands for ftp session
count num of connection to same host during last 2 seconds

(sec)
srv-count num of services to the current service during last 2 secs
dst-host-srv-rerror-rate % of connections with REJ rate between destination and

host with same srv
serror-rate % of connections with SYN error
srv-serror-rate % of connections (con.) with REJ with same service
rerror-rate % of con. with REJ error

Continued on next page
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Table A.1 – continued from previous page
Feature name feature description

srv-rerror-rate % of con. with REJ with same service
same-srv-rate % of con. with same service rate
diff-srv-rate % of con. with different service(srv) rate
srv-diff-host-rate % of con. to different hosts
dst-host-count num of con. between a destination(dst) and host
dst-host-srv-count num of con. between dst and host with same service
dst-host-same-srv-rate % of con. between dst and host with same service
dst-host-diff-srv-rate % of con. between dst and host with different service
dst-host-same-src-port-rate % of con. between dst and host with same source port
dst-host-srv-diff-host-rate % of con. between dst and host with different host and

srv
dst-host-serror-rate % of con. with SYN rate between destination and host
dst-host-srv-serror-rate % of con. with SYN rate between dst and host with same

srv
dst-host-rerror-rate % of con. with REJ rate between dst and host with same

srv
Table A.1: Continuous featues of the NSL-KDD 99
dataset [38]



Appendix B

Feature Description of the
Ng-dataset

Feature feature description type
dur total duration of the record continuous
stime start time of record continuous
ltime ending time of record continuous
mean average duration for aggregated records continuous
sttl time to live values from source to destination continuous
proto type of protocol in the transaction discrete
pckts Total count of packets in the transaction continuous
saddr source IP address discrete
sport source port number used continuous
spkts count of packets sent from the source to destination continuous
sbytes transaction bytes from source to destination continuous
daddr destination IP address discrete
dport destination port number continuous
dpkts count of packets from destination to the source IP address continuous
dbytes transaction bytes from destination to source continuous
load bits per second continuous
sload source bits per second continuous
dload destination bits per second continuous
loss packets dropped or retransmitted continuous
sloss source packets dropped or retransmitted continuous
dloss destination packets dropped or retransmitted continuous

Table B.1: Features of the Ng-set
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Appendix C

Feature Extraction with Argus

The argus command converts the captured PCAP file format into an argus
readable format.

argus -r TrafficWithAttacks11.pcap -w file1.argus

argus -r TrafficWithAttacks12.pcap -w file2.argus

The actual feature extraction is specified in the command line for the read
argus tool (ra) shown below. Each of the features are described in the table
in Appendix A above.

ra - u -nr file1.argus -c ";" -s dur stime ltime mean sttl

proto pkts saddr sport spkts sbytes daddr dport dpkts dbytes load

sload dload loss sloss dloss ploss psloss > NgSet1.txt

ra - u -nr file2.argus -c ";" -s dur stime ltime mean sttl

proto pkts saddr sport spkts sbytes daddr dport dpkts dbytes load

sload dload loss sloss dloss ploss psloss > NgSet2.txt
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